--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c31a0826-774c-48af-86bb-629bd7ef2583 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c64ff0d01392d1e4_train_data.json ds_type: json format: custom path: /workspace/input_data/c64ff0d01392d1e4_train_data.json type: field_instruction: prompt_type field_output: prompt_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/c31a0826-774c-48af-86bb-629bd7ef2583 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 8832 micro_batch_size: 4 mlflow_experiment_name: /tmp/c64ff0d01392d1e4_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fb46a0d2-7710-4f02-ba9b-a717c0c8c0cd warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# c31a0826-774c-48af-86bb-629bd7ef2583 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3084 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.3671 | 0.0006 | 1 | 5.3415 | | 3.1325 | 0.0649 | 100 | 3.3948 | | 3.3967 | 0.1297 | 200 | 3.2506 | | 2.9834 | 0.1946 | 300 | 3.1461 | | 2.6376 | 0.2594 | 400 | 3.0808 | | 3.4206 | 0.3243 | 500 | 2.9966 | | 3.0461 | 0.3892 | 600 | 2.9330 | | 2.2323 | 0.4540 | 700 | 2.8605 | | 2.7525 | 0.5189 | 800 | 2.7908 | | 2.8358 | 0.5838 | 900 | 2.7131 | | 2.8312 | 0.6486 | 1000 | 2.6433 | | 2.4678 | 0.7135 | 1100 | 2.5774 | | 2.5489 | 0.7783 | 1200 | 2.5080 | | 2.3458 | 0.8432 | 1300 | 2.4473 | | 2.3761 | 0.9081 | 1400 | 2.3796 | | 2.0236 | 0.9729 | 1500 | 2.3125 | | 1.9383 | 1.0378 | 1600 | 2.2606 | | 1.8816 | 1.1026 | 1700 | 2.1880 | | 1.8313 | 1.1675 | 1800 | 2.1419 | | 1.9847 | 1.2324 | 1900 | 2.0941 | | 1.8436 | 1.2972 | 2000 | 2.0431 | | 1.6931 | 1.3621 | 2100 | 2.0023 | | 1.593 | 1.4269 | 2200 | 1.9543 | | 1.8932 | 1.4918 | 2300 | 1.9170 | | 2.0395 | 1.5567 | 2400 | 1.8831 | | 1.7951 | 1.6215 | 2500 | 1.8598 | | 1.5655 | 1.6864 | 2600 | 1.8419 | | 1.2855 | 1.7513 | 2700 | 1.8256 | | 1.4709 | 1.8161 | 2800 | 1.8161 | | 1.7402 | 1.8810 | 2900 | 1.8116 | | 1.7177 | 1.9458 | 3000 | 1.8095 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1