Allanatrix commited on
Commit
b838d51
·
verified ·
1 Parent(s): dcb8f7a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -2
README.md CHANGED
@@ -2,5 +2,91 @@
2
  license: apache-2.0
3
  pipeline_tag: graph-ml
4
  tags:
5
- - chemistry
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  pipeline_tag: graph-ml
4
  tags:
5
+ - Material Science
6
+ ---
7
+ # NexaMat: Battery Ion Property Prediction and Material Generation
8
+
9
+ **NexaMat** is an advanced dual-purpose model for material science, tailored for battery research. It predicts ion properties and generates novel battery-relevant materials using:
10
+
11
+ - **Graph Neural Network (GNN)**: Captures structural features for precise property prediction.
12
+ - **Variational Autoencoder (VAE)**: Generates optimized material candidates for battery applications.
13
+
14
+ NexaMat is a key component of the [Nexa Scientific AI Model Suite](https://huggingface.co/spaces/Allanatrix/NexaHub), driving innovation in domain-specific machine learning.
15
+
16
+ ---
17
+
18
+ ## Use Case
19
+
20
+ - Predicting ionic conductivity, stability, and electrochemical properties.
21
+ - Proposing novel materials for battery optimization.
22
+ - Accelerating research and development in next-generation battery technologies.
23
+
24
+ ---
25
+
26
+ ## Model Overview
27
+
28
+ - **Input**: Molecular or crystal graph representations (nodes: atoms, edges: bonds, lattice features).
29
+ - **Output**:
30
+ - GNN: Property predictions (e.g., ionic conductivity, formation energy, voltage window).
31
+ - VAE: Generated material structures with targeted properties.
32
+ - **Architecture**:
33
+ - **GNN**: Encodes structural data into high-dimensional embeddings for property prediction.
34
+ - **VAE**: Learns a latent space for generating valid, battery-optimized material candidates.
35
+
36
+ ---
37
+
38
+ ## Dataset
39
+
40
+ - **Source**: Public materials databases (e.g., [Materials Project](https://materialsproject.org/), [OQMD](https://oqmd.org/)).
41
+ - **Preprocessing**: Structures cleaned, normalized, and converted into graph-based tensors.
42
+ - **Target**: Battery-relevant properties (e.g., ionic conductivity, electrochemical stability).
43
+
44
+ ---
45
+
46
+ ## Example Workflow
47
+
48
+ ```python
49
+ from nexamat import GNNPredictor, VAEMaterialGenerator
50
+
51
+ # Initialize models
52
+ predictor = GNNPredictor.load("Allanatrix/predictor.pt")
53
+ vae = VAEMaterialGenerator.load("Allanatrix/vae.pt")
54
+
55
+ # Predict properties for a material
56
+ material_graph = load_material("LiFePO4.json")
57
+ prediction = predictor(material_graph)
58
+
59
+ # Generate novel material candidates
60
+ latent_sample = vae.sample_latent()
61
+ generated_material = vae.decode(latent_sample)
62
+ ```
63
+
64
+ Refer to the model documentation for detailed input preparation and usage instructions.
65
+
66
+ ---
67
+
68
+ ## Applications
69
+
70
+ - **Solid-State Electrolyte Discovery**: Screening materials for high ionic conductivity.
71
+ - **High-Throughput Material Design**: Accelerating identification of battery components.
72
+ - **AI-Driven R&D**: Enhancing materials design with generative and predictive modeling.
73
+
74
+ ---
75
+
76
+ ## License and Citation
77
+
78
+ Licensed under the **Boost Software License 1.1 (BSL-1.1)**. If using NexaMat in academic or industrial work, please cite this repository and acknowledge the source datasets. Training data is derived from open scientific repositories.
79
+
80
+ ---
81
+
82
+ ## Related Nexa Projects
83
+
84
+ Explore the Nexa Scientific Ecosystem:
85
+ - [Nexa R&D](https://huggingface.co/spaces/Allanatrix/NexaR&D): Model optimization and experimentation platform.
86
+ - [Nexa Data Studio](https://huggingface.co/spaces/Allanatrix/NexaDataStudio): Tools for dataset processing and visualization.
87
+ - [Nexa Infrastructure](https://huggingface.co/spaces/Allanatrix/NexaInfrastructure): Scalable ML deployment solutions.
88
+ - [Nexa Hub](https://huggingface.co/spaces/Allanatrix/NexaHub): Central portal for Nexa resources.
89
+
90
+ ---
91
+
92
+ *Developed and maintained by [Allan](https://huggingface.co/Allanatrix), an independent researcher advancing scientific machine learning for materials science and battery innovation.*