GGUF
llama-cpp
gguf-my-repo
AlicanKiraz0 commited on
Commit
fbef3ab
·
verified ·
1 Parent(s): 3b7593c

Upload 6 files

Browse files
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 1755245300679.jpeg filter=lfs diff=lfs merge=lfs -text
2
+ 1755333107271.jpeg filter=lfs diff=lfs merge=lfs -text
1755245300673.jpeg ADDED
1755245300679.jpeg ADDED

Git LFS Details

  • SHA256: 4029ec09f972f433bc6807e31997748de11b00ef09c15b8acc5cd7cf84afef0e
  • Pointer size: 131 Bytes
  • Size of remote file: 120 kB
1755245300692.jpeg ADDED
1755245300701.jpeg ADDED
1755333107271.jpeg ADDED

Git LFS Details

  • SHA256: 50e9d06d10cd69dc843259eb24fb7a2b3f7e7ed8821bf33c9bf1812631642491
  • Pointer size: 131 Bytes
  • Size of remote file: 191 kB
README.md ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model:
4
+ - Qwen/Qwen3-14B
5
+ tags:
6
+ - llama-cpp
7
+ - gguf-my-repo
8
+ datasets:
9
+ - Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset
10
+ - Trendyol/All-CVE-Chat-MultiTurn-1999-2025-Dataset
11
+ ---
12
+
13
+ <div align="left">
14
+
15
+ ![Model Type](https://img.shields.io/badge/Model-Cybersecurity%20Specialized-red) ![Base Model](https://img.shields.io/badge/Base%20Model-Qwen3--14B-blue) ![Quantization](https://img.shields.io/badge/Quantization-Q8__0%20GGUF-green) ![License](https://img.shields.io/badge/License-Apache%202.0-yellow) ![Language](https://img.shields.io/badge/Language-English-orange)
16
+
17
+ </div>
18
+
19
+ # BaronLLM v2.0 - State-of-the-Art Offensive Security AI Model
20
+
21
+ <img src="https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8/resolve/main/1755245300679.jpeg" width="700" />
22
+
23
+
24
+
25
+ **Developed Trendyol Group Security Team**
26
+ - Alican Kiraz
27
+ - İsmail Yavuz
28
+ - Melih Yılmaz
29
+ - Mertcan Kondur
30
+ - Rıza Sabuncu
31
+ - Özgün Kultekin
32
+
33
+ > **BaronLLM v2.0** is a state-of-the-art large language model fine-tuned specifically for *offensive cybersecurity research & adversarial simulation*, achieving breakthrough performance on industry benchmarks while maintaining safety constraints.
34
+
35
+ ---
36
+
37
+ ## 🏆 Benchmark Achievements
38
+
39
+ ### CS-Eval Global Rankings
40
+ - **13th place** globally among all cybersecurity AI models
41
+ - **4th place** among publicly released models in its parameter class
42
+ - Comprehensive average score: **80.93%**
43
+
44
+ <img src="https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8/resolve/main/1755333107271.jpeg" width="500" />
45
+ <img src="https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8/resolve/main/1755245300701.jpeg" width="500" />
46
+ <img src="https://huggingface.co/AlicanKiraz0/Qwen3-14B-BaronLLM-v2-Q8/resolve/main/1755245300692.jpeg" width="500" />
47
+
48
+ ### SecBench Performance Metrics
49
+
50
+ | Category | BaronLLM v2.0 | vs. Industry Leaders |
51
+ |----------|---------------|----------------------|
52
+ | **Standards & Regulations** | **87.2%** | Only 4.3 points behind Deepseek-v3 (671B) - 48× smaller! |
53
+ | **Application Security** | **85.5%** | Just 4.8 points behind GPT-4o (175B) - 12.5× more compact! |
54
+ | **Endpoint & Host** | **88.1%** | Only 1.4 points behind o1-preview (200B) - 14× higher efficiency! |
55
+ | **MCQ Overall** | **86.9%** | Within 2-6% of premium models! |
56
+
57
+
58
+ The model has been trained with 4 H100 GPUs for 65 hours.
59
+
60
+ ### Performance Improvements (v1 → v2)
61
+ - Base model performance boosted by **~1.5x** on CyberSec-Eval benchmarks
62
+ - Enhanced with Causal Reasoning and Chain-of-Thought (CoT) capabilities
63
+ ---
64
+
65
+ ## ✨ Key Features
66
+
67
+ | Capability | Details |
68
+ |------------|---------|
69
+ | **Adversary Simulation** | Generates full ATT&CK chains, C2 playbooks, and social-engineering scenarios |
70
+ | **Exploit Reasoning** | Step-by-step vulnerability analysis with code-level explanations and PoC generation |
71
+ | **Payload Optimization** | Advanced obfuscation techniques and multi-stage payload logic |
72
+ | **Threat Intelligence** | Log analysis, artifact triage, and attack pattern recognition |
73
+ | **Cloud-Native Security** | Kubernetes, serverless, and multi-cloud environment testing |
74
+ | **Emerging Threats** | AI/ML security, quantum computing risks, and zero-day research |
75
+
76
+ ---
77
+
78
+ ## 🏗️ Model Architecture
79
+
80
+ | Specification | Details |
81
+ |--------------|---------|
82
+ | **Base Model** | Qwen3-14B |
83
+ | **Parameters** | 14 Billion |
84
+ | **Context Length** | 8,192 tokens |
85
+ | **Training Data** | 53,202 curated examples |
86
+ | **Domains Covered** | 200+ specialized cybersecurity areas |
87
+ | **Languages** | English |
88
+ | **Fine-tuning Method** | Instruction tuning with CoT |
89
+
90
+ ---
91
+
92
+ ## 📊 Training Dataset
93
+
94
+ **53,202** meticulously curated instruction-tuning examples covering **200+ specialized cybersecurity domains**:
95
+
96
+ ### Topic Distribution
97
+ - Cloud Security & DevSecOps: 18.5%
98
+ - Threat Intelligence & Hunting: 16.2%
99
+ - Incident Response & Forensics: 14.8%
100
+ - AI/ML Security: 12.3%
101
+ - Network & Protocol Security: 11.7%
102
+ - Identity & Access Management: 9.4%
103
+ - Emerging Technologies: 8.6%
104
+ - Platform-Specific Security: 5.3%
105
+ - Compliance & Governance: 3.2%
106
+
107
+ ### Data Sources (Curated & Redacted)
108
+ - Public vulnerability databases (NVD/CVE, VulnDB)
109
+ - Security research papers (Project Zero, PortSwigger, NCC Group)
110
+ - Industry threat reports (with permissions)
111
+ - Synthetic ATT&CK chains (auto-generated + human-vetted)
112
+ - Conference proceedings (BlackHat, DEF CON, RSA)
113
+
114
+ > **Note:** No copyrighted exploit code or proprietary malware datasets were used.
115
+ > Dataset filtering removed raw shellcode/binary payloads.
116
+
117
+ ---
118
+
119
+ ## 🚀 Usage & Access
120
+
121
+ ### Quick Start
122
+ ```python
123
+ from transformers import AutoModelForCausalLM, AutoTokenizer
124
+
125
+ model_id = "AlicanKiraz/BaronLLM-v2.0" # Requires authentication
126
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
127
+ model = AutoModelForCausalLM.from_pretrained(
128
+ model_id,
129
+ torch_dtype="auto",
130
+ device_map="auto",
131
+ )
132
+
133
+ def generate(prompt, **kwargs):
134
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
135
+ output = model.generate(**inputs, max_new_tokens=512, **kwargs)
136
+ return tokenizer.decode(output[0], skip_special_tokens=True)
137
+
138
+ # Example usage
139
+ print(generate("Analyze the exploitability of CVE-2024-45721 in a Kubernetes cluster"))
140
+ ```
141
+
142
+ ---
143
+
144
+ ## 📚 Prompting Best Practices
145
+
146
+ | Objective | Template | Parameters |
147
+ |-----------|----------|------------|
148
+ | **Exploit Analysis** | `ROLE: Senior Pentester\nOBJECTIVE: Analyze CVE-XXXX...` | `temperature=0.3, top_p=0.9` |
149
+ | **Red Team Planning** | `Generate ATT&CK chain for [target environment]...` | `temperature=0.5, top_p=0.95` |
150
+ | **Threat Hunting** | `Identify C2 patterns in [log type]...` | `temperature=0.2, top_p=0.85` |
151
+ | **Incident Response** | `Create response playbook for [threat scenario]...` | `temperature=0.4, top_p=0.9` |
152
+
153
+ ---
154
+
155
+ ## 🛡️ Safety & Alignment
156
+
157
+ ### Ethical Framework
158
+ - **Policy Gradient RLHF** with security domain experts
159
+ - **OpenAI/Anthropic-style policies** preventing malicious misuse
160
+ - **Continuous red-teaming** via SecEval v0.3
161
+ - **Dual-use prevention** mechanisms
162
+
163
+ ### Responsible Disclosure
164
+ - Model capabilities are documented transparently
165
+ - Access restricted to verified professionals
166
+ - Usage monitoring for compliance
167
+ - Regular security audits
168
+
169
+ ---
170
+
171
+ ## 📖 Academic Publication
172
+
173
+ The technical paper detailing BaronLLM v2.0's architecture, training methodology, and benchmark results will be available on arXiv within one month.
174
+
175
+ ---
176
+
177
+ ## 🤝 Contributing & Support
178
+
179
+ BaronLLM was originally developed to support the Trendyol Group Security Team and has evolved into a state-of-the-art offensive security AI model. We welcome collaboration from the security community:
180
+
181
+ - **Bug Reports**: Via GitHub Issues
182
+ - **Feature Requests**: Through community discussions
183
+ - **Research Collaboration**: Contact for academic partnerships
184
+
185
+ ---
186
+
187
+ ## ⚖️ License & Disclaimer
188
+
189
+ **License:** Apache 2.0 (Model weights require separate authorization)
190
+
191
+ **Important:** This model is designed for authorized security testing and research only. Users must comply with all applicable laws and obtain proper authorization before conducting any security assessments. The developers assume no liability for misuse.
192
+
193
+ ---
194
+
195
+ ## 🌟 Acknowledgments
196
+
197
+ Special thanks to:
198
+ - Trendyol Group Security Team
199
+ - The open-source security community
200
+ - Academic Cybersecurity research community
201
+ - All contributors and testers
202
+
203
+ ---
204
+
205
+ *"Those who shed light on others do not remain in darkness..."*
206
+
207
+ **This project does not pursue any profit.**
208
+ ```