Upload PPO LunarLander-v2 trained agent2
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2again.zip +3 -0
- ppo-LunarLander-v2again/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2again/data +94 -0
- ppo-LunarLander-v2again/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2again/policy.pth +3 -0
- ppo-LunarLander-v2again/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2again/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 280.92 +/- 13.25
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>", "_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>", "forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651870949.7029133, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0L4zwplHy6FtuPupEtU7RfGjK7tOilOQAAgD8AAIA/5uBmvV1NWD/M+6M8pgz1vmods725LCk+AAAAAAAAAADN1qS8DpiCvCrbZT7xP+e9oGN2vU9zk74AAIA/AACAP80brjwkVpQ+7rkNPFJnwb6smA89poIuPQAAAAAAAAAAAJwlPEhvsbq954W1UWdfsLXHuTkUk7I0AACAPwAAgD8aDWs91U+9P5x9GD82CGw+jL29O/H6Nj4AAAAAAAAAAOZ5TT2ObF4/37EgvWGr5r7vGbA9WIVcvQAAAAAAAAAAAFizvJvW67xuO5o9CorlvHOZcDyA5SK9AACAPwAAgD8zDVo80jSiPMUw/7wQ4Y++JZ2YvXaVdDwAAAAAAAAAACN2V77KNXo/TLlHvhe2475Opf6+mn6NvQAAAAAAAAAA8/CTvS3dlj/QxaC9GcT5vpiEyr1345i9AAAAAAAAAACaHUO8wwMdvGv7Fj5BNZu7JjeCvQ7mS7wAAIA/AACAP2aY+zxgw74/2JPvPTcnD758DP89zEwbPgAAAAAAAAAAsw0EvqjYiD8ivqi8qwr9vmbnVr4g3ic9AAAAAAAAAAANPI29G8dOP1XaB73CEcu+F2NevuV72D0AAAAAAAAAAGamhbyxlJc+88/XvQwawr7r3s+9jzs5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQDIdOv0ecECUhpRSlIwBbJRL5YwBdJRHQLdTcr9l2/11fZQoaAZoCWgPQwgDXfsC+mpvQJSGlFKUaBVL4GgWR0C3U4Cr5qM4dX2UKGgGaAloD0MIg/krZO5TckCUhpRSlGgVS+ZoFkdAt1OOfVZs9HV9lChoBmgJaA9DCAdDHVY4J3JAlIaUUpRoFUvKaBZHQLdToJKaodd1fZQoaAZoCWgPQwih2AqalvhvQJSGlFKUaBVL7GgWR0C3U60mY0EYdX2UKGgGaAloD0MIRl1r71PacECUhpRSlGgVS9FoFkdAt1P7aN+9anV9lChoBmgJaA9DCF1Q3zJnbXJAlIaUUpRoFUv5aBZHQLdUChGH58B1fZQoaAZoCWgPQwiC4zJuag9xQJSGlFKUaBVLzmgWR0C3VBVvuPV/dX2UKGgGaAloD0MI9l580d5KcUCUhpRSlGgVS9loFkdAt1RLBKtga3V9lChoBmgJaA9DCP5F0JhJh3JAlIaUUpRoFUvzaBZHQLdUTOAAhjh1fZQoaAZoCWgPQwiIgEOoEqdxQJSGlFKUaBVL3WgWR0C3VGFQ2uPndX2UKGgGaAloD0MIzywJUBM/cUCUhpRSlGgVS9hoFkdAt1R43rD633V9lChoBmgJaA9DCFwDWyXYoG5AlIaUUpRoFUvaaBZHQLdUomeUY9B1fZQoaAZoCWgPQwhIaqFk8kdyQJSGlFKUaBVL2WgWR0C3VKxacI7edX2UKGgGaAloD0MINxyWBv5vcUCUhpRSlGgVS9FoFkdAt1TBycTakHV9lChoBmgJaA9DCLd/ZaVJAm9AlIaUUpRoFUveaBZHQLdUxwZflZJ1fZQoaAZoCWgPQwj5vU1/9tVxQJSGlFKUaBVL7GgWR0C3VNAGGEf1dX2UKGgGaAloD0MIHhZqTbMtcUCUhpRSlGgVS9loFkdAt1Tbs4T9KnV9lChoBmgJaA9DCFcHQNzVjXNAlIaUUpRoFUvdaBZHQLdU8yVv/BF1fZQoaAZoCWgPQwio5JzYww1vQJSGlFKUaBVL9WgWR0C3VSGj0tiAdX2UKGgGaAloD0MIyHiUSnipb0CUhpRSlGgVS9JoFkdAt1VHhZQpF3V9lChoBmgJaA9DCEn1nV9U4nJAlIaUUpRoFUvuaBZHQLdVZPnB+F11fZQoaAZoCWgPQwh1VaAWQ3hwQJSGlFKUaBVLxGgWR0C3VXHWWhRJdX2UKGgGaAloD0MIbTttjYiCZkCUhpRSlGgVTegDaBZHQLdVjD3ueBh1fZQoaAZoCWgPQwh6NUBpKJ9wQJSGlFKUaBVL+WgWR0C3VY58F6iTdX2UKGgGaAloD0MIQUerWhLKc0CUhpRSlGgVS9toFkdAt1WWKpDNQnV9lChoBmgJaA9DCNgRh2wgSnFAlIaUUpRoFUvXaBZHQLdVofR/mT11fZQoaAZoCWgPQwjEfHkBNpxyQJSGlFKUaBVL1GgWR0C3WnhfWtlqdX2UKGgGaAloD0MIGXPXEjJIc0CUhpRSlGgVS8hoFkdAt1p57tzCDXV9lChoBmgJaA9DCFOVtriGlXNAlIaUUpRoFUv/aBZHQLdahvPkaMt1fZQoaAZoCWgPQwh2ilWDcFhxQJSGlFKUaBVL5mgWR0C3Woo0IkZ8dX2UKGgGaAloD0MIswkwLH84cUCUhpRSlGgVS+RoFkdAt1qi8Zk08HV9lChoBmgJaA9DCAO2gxE7W3FAlIaUUpRoFUvtaBZHQLdatlnh86V1fZQoaAZoCWgPQwjRsu4fi9huQJSGlFKUaBVL7WgWR0C3WsDJ2dNGdX2UKGgGaAloD0MICqGDLuFkR0CUhpRSlGgVS5VoFkdAt1rI0k4WDnV9lChoBmgJaA9DCFHdXPwtmnFAlIaUUpRoFUv8aBZHQLda6yZ8a4t1fZQoaAZoCWgPQwgyPsxetpRxQJSGlFKUaBVL42gWR0C3WvSWJJoTdX2UKGgGaAloD0MI4JwRpb34b0CUhpRSlGgVS9toFkdAt1sLayrxRXV9lChoBmgJaA9DCLbWFwltGG9AlIaUUpRoFUveaBZHQLdbTb3oLXt1fZQoaAZoCWgPQwjKMsSx7jZxQJSGlFKUaBVL8GgWR0C3W00pI+W4dX2UKGgGaAloD0MIKChFKzc6cECUhpRSlGgVS9toFkdAt1tRfBvaUXV9lChoBmgJaA9DCIUJo1nZuXNAlIaUUpRoFUvxaBZHQLdbZ4BV+7V1fZQoaAZoCWgPQwiWr8vw33d0QJSGlFKUaBVL4WgWR0C3W2hQemvXdX2UKGgGaAloD0MIjxt+N53HcUCUhpRSlGgVS9VoFkdAt1uUT101ZXV9lChoBmgJaA9DCHSbcK/MBnBAlIaUUpRoFUvlaBZHQLdbudupCKJ1fZQoaAZoCWgPQwjHoX4XNgJwQJSGlFKUaBVL8mgWR0C3W9EdJaq0dX2UKGgGaAloD0MIbCQJwhUYc0CUhpRSlGgVS85oFkdAt1vlUDMeOnV9lChoBmgJaA9DCCJxj6XPDnBAlIaUUpRoFUvwaBZHQLdb7Bg/keZ1fZQoaAZoCWgPQwgjv36IzftyQJSGlFKUaBVL22gWR0C3W+7c9GI9dX2UKGgGaAloD0MIXmQCfs16cUCUhpRSlGgVTRUBaBZHQLdb86FuejF1fZQoaAZoCWgPQwgps0EmWYBzQJSGlFKUaBVL8mgWR0C3XAFdC3PSdX2UKGgGaAloD0MIxCPx8nSyUkCUhpRSlGgVS4xoFkdAt1wQm4RVZXV9lChoBmgJaA9DCO49XHLcRHBAlIaUUpRoFUvmaBZHQLdcLmF8G9p1fZQoaAZoCWgPQwhw0F59PLFwQJSGlFKUaBVL9GgWR0C3XDbZi/fwdX2UKGgGaAloD0MIVMcqpef+cUCUhpRSlGgVS+9oFkdAt1xQhq0ty3V9lChoBmgJaA9DCOP8TSjEcHBAlIaUUpRoFUvZaBZHQLdcc3pOerd1fZQoaAZoCWgPQwi54Az+PolyQJSGlFKUaBVL3GgWR0C3XHpha1TjdX2UKGgGaAloD0MICi5W1GC4cUCUhpRSlGgVS9BoFkdAt1x+sRxtHnV9lChoBmgJaA9DCCfChqfXr3JAlIaUUpRoFUv3aBZHQLdcskM1CPZ1fZQoaAZoCWgPQwgSpFLsaOxxQJSGlFKUaBVL42gWR0C3XMWb5M11dX2UKGgGaAloD0MI+IvZklWpbkCUhpRSlGgVS+JoFkdAt1zsAsCkoHV9lChoBmgJaA9DCH2W58HdqnFAlIaUUpRoFUvZaBZHQLddEMLWqcV1fZQoaAZoCWgPQwj8NO7N731xQJSGlFKUaBVL2mgWR0C3XRXHWBjGdX2UKGgGaAloD0MItd0E3zQ7b0CUhpRSlGgVS+9oFkdAt10YNXo1UHV9lChoBmgJaA9DCCFYVS+/+29AlIaUUpRoFUvjaBZHQLddKCaJAMV1fZQoaAZoCWgPQwipaoKo+yRzQJSGlFKUaBVL9mgWR0C3XTQ62fCidX2UKGgGaAloD0MInn3lQfoGc0CUhpRSlGgVS+loFkdAt10/dvbXYnV9lChoBmgJaA9DCJuNlZgnM3NAlIaUUpRoFUvPaBZHQLddS+XqqwR1fZQoaAZoCWgPQwhORL+2PghxQJSGlFKUaBVL+2gWR0C3XWXko4MndX2UKGgGaAloD0MIPPpfrsWDcECUhpRSlGgVS9FoFkdAt11w1DSgG3V9lChoBmgJaA9DCGr4FtYNJ3RAlIaUUpRoFUvLaBZHQLddjXKbKA91fZQoaAZoCWgPQwgcRGtFG0ByQJSGlFKUaBVNCgFoFkdAt12i5H3DenV9lChoBmgJaA9DCHb6QV2kt3BAlIaUUpRoFUvWaBZHQLddpDKoybh1fZQoaAZoCWgPQwjbTfBNE2ZwQJSGlFKUaBVL9mgWR0C3XdGvr4WUdX2UKGgGaAloD0MI4ICWriB1c0CUhpRSlGgVS9RoFkdAt13tkf9xZXV9lChoBmgJaA9DCOeKUkLwrnNAlIaUUpRoFUv7aBZHQLdeEjSofjl1fZQoaAZoCWgPQwhznNuEu0xxQJSGlFKUaBVLzWgWR0C3Xin0Gu9wdX2UKGgGaAloD0MIINJvX8fccECUhpRSlGgVS+NoFkdAt15UeMhounV9lChoBmgJaA9DCB+F61H44XJAlIaUUpRoFU0BAWgWR0C3Xlff8/D+dX2UKGgGaAloD0MIiUShZV3ybkCUhpRSlGgVS9loFkdAt15XcUM5O3V9lChoBmgJaA9DCFJkraGU/3FAlIaUUpRoFUvraBZHQLdeXuTibUh1fZQoaAZoCWgPQwjxZaIIKWVvQJSGlFKUaBVL2mgWR0C3XnCaiKzidX2UKGgGaAloD0MIKNTTR2ADc0CUhpRSlGgVS/9oFkdAt16Ycp9ZzXV9lChoBmgJaA9DCEKVmj3QgHBAlIaUUpRoFUvZaBZHQLdemXC0ngJ1fZQoaAZoCWgPQwjudr00BZ1xQJSGlFKUaBVL8WgWR0C3Xp8FQl8gdX2UKGgGaAloD0MIDLH6I0wrcUCUhpRSlGgVS+VoFkdAt160ht+CsnV9lChoBmgJaA9DCFbT9UQXY3FAlIaUUpRoFUv2aBZHQLde6nbZezF1fZQoaAZoCWgPQwiUMqmhTRtzQJSGlFKUaBVL6mgWR0C3Xu/OlfqpdX2UKGgGaAloD0MIrrg4Krf9b0CUhpRSlGgVS/loFkdAt18FR3u/lHV9lChoBmgJaA9DCBv1EI3usW9AlIaUUpRoFUvcaBZHQLdfDWmxdIJ1fZQoaAZoCWgPQwhStkjaja9yQJSGlFKUaBVL1GgWR0C3Xz0+HJtBdX2UKGgGaAloD0MIuFfmrfqSckCUhpRSlGgVS/hoFkdAt19LupjtonV9lChoBmgJaA9DCIoBEk1gBHFAlIaUUpRoFUvdaBZHQLdfh/+sHSp1fZQoaAZoCWgPQwjJsIo3cnFzQJSGlFKUaBVL6WgWR0C3X5hAnlXBdX2UKGgGaAloD0MIa5p3nKIUc0CUhpRSlGgVS9VoFkdAt1+XZZjhDXV9lChoBmgJaA9DCNzxJr8F43FAlIaUUpRoFUvkaBZHQLdfmszEaVF1fZQoaAZoCWgPQwiLFwtD5MtyQJSGlFKUaBVL72gWR0C3X6PFNtZWdX2UKGgGaAloD0MIxLXaw16pckCUhpRSlGgVTREBaBZHQLdfrCXyAhB1fZQoaAZoCWgPQwjryfyjbxVzQJSGlFKUaBVL3GgWR0C3X8bnLaEjdX2UKGgGaAloD0MIN8ZOeElBckCUhpRSlGgVS+toFkdAt1/Z0tAcDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2again.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e871c36f642b26eebe463b72ead8f5f6f8f97d0b0a46252c798ef937929d2634
|
3 |
+
size 143990
|
ppo-LunarLander-v2again/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2again/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff709e63f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff709e6c050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff709e6c0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff709e6c170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff709e6c200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff709e6c290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff709e6c320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff709e6c3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff709e6c440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff709e6c4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff709e6c560>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff709ea4e40>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651870949.7029133,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0L4zwplHy6FtuPupEtU7RfGjK7tOilOQAAgD8AAIA/5uBmvV1NWD/M+6M8pgz1vmods725LCk+AAAAAAAAAADN1qS8DpiCvCrbZT7xP+e9oGN2vU9zk74AAIA/AACAP80brjwkVpQ+7rkNPFJnwb6smA89poIuPQAAAAAAAAAAAJwlPEhvsbq954W1UWdfsLXHuTkUk7I0AACAPwAAgD8aDWs91U+9P5x9GD82CGw+jL29O/H6Nj4AAAAAAAAAAOZ5TT2ObF4/37EgvWGr5r7vGbA9WIVcvQAAAAAAAAAAAFizvJvW67xuO5o9CorlvHOZcDyA5SK9AACAPwAAgD8zDVo80jSiPMUw/7wQ4Y++JZ2YvXaVdDwAAAAAAAAAACN2V77KNXo/TLlHvhe2475Opf6+mn6NvQAAAAAAAAAA8/CTvS3dlj/QxaC9GcT5vpiEyr1345i9AAAAAAAAAACaHUO8wwMdvGv7Fj5BNZu7JjeCvQ7mS7wAAIA/AACAP2aY+zxgw74/2JPvPTcnD758DP89zEwbPgAAAAAAAAAAsw0EvqjYiD8ivqi8qwr9vmbnVr4g3ic9AAAAAAAAAAANPI29G8dOP1XaB73CEcu+F2NevuV72D0AAAAAAAAAAGamhbyxlJc+88/XvQwawr7r3s+9jzs5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQDIdOv0ecECUhpRSlIwBbJRL5YwBdJRHQLdTcr9l2/11fZQoaAZoCWgPQwgDXfsC+mpvQJSGlFKUaBVL4GgWR0C3U4Cr5qM4dX2UKGgGaAloD0MIg/krZO5TckCUhpRSlGgVS+ZoFkdAt1OOfVZs9HV9lChoBmgJaA9DCAdDHVY4J3JAlIaUUpRoFUvKaBZHQLdToJKaodd1fZQoaAZoCWgPQwih2AqalvhvQJSGlFKUaBVL7GgWR0C3U60mY0EYdX2UKGgGaAloD0MIRl1r71PacECUhpRSlGgVS9FoFkdAt1P7aN+9anV9lChoBmgJaA9DCF1Q3zJnbXJAlIaUUpRoFUv5aBZHQLdUChGH58B1fZQoaAZoCWgPQwiC4zJuag9xQJSGlFKUaBVLzmgWR0C3VBVvuPV/dX2UKGgGaAloD0MI9l580d5KcUCUhpRSlGgVS9loFkdAt1RLBKtga3V9lChoBmgJaA9DCP5F0JhJh3JAlIaUUpRoFUvzaBZHQLdUTOAAhjh1fZQoaAZoCWgPQwiIgEOoEqdxQJSGlFKUaBVL3WgWR0C3VGFQ2uPndX2UKGgGaAloD0MIzywJUBM/cUCUhpRSlGgVS9hoFkdAt1R43rD633V9lChoBmgJaA9DCFwDWyXYoG5AlIaUUpRoFUvaaBZHQLdUomeUY9B1fZQoaAZoCWgPQwhIaqFk8kdyQJSGlFKUaBVL2WgWR0C3VKxacI7edX2UKGgGaAloD0MINxyWBv5vcUCUhpRSlGgVS9FoFkdAt1TBycTakHV9lChoBmgJaA9DCLd/ZaVJAm9AlIaUUpRoFUveaBZHQLdUxwZflZJ1fZQoaAZoCWgPQwj5vU1/9tVxQJSGlFKUaBVL7GgWR0C3VNAGGEf1dX2UKGgGaAloD0MIHhZqTbMtcUCUhpRSlGgVS9loFkdAt1Tbs4T9KnV9lChoBmgJaA9DCFcHQNzVjXNAlIaUUpRoFUvdaBZHQLdU8yVv/BF1fZQoaAZoCWgPQwio5JzYww1vQJSGlFKUaBVL9WgWR0C3VSGj0tiAdX2UKGgGaAloD0MIyHiUSnipb0CUhpRSlGgVS9JoFkdAt1VHhZQpF3V9lChoBmgJaA9DCEn1nV9U4nJAlIaUUpRoFUvuaBZHQLdVZPnB+F11fZQoaAZoCWgPQwh1VaAWQ3hwQJSGlFKUaBVLxGgWR0C3VXHWWhRJdX2UKGgGaAloD0MIbTttjYiCZkCUhpRSlGgVTegDaBZHQLdVjD3ueBh1fZQoaAZoCWgPQwh6NUBpKJ9wQJSGlFKUaBVL+WgWR0C3VY58F6iTdX2UKGgGaAloD0MIQUerWhLKc0CUhpRSlGgVS9toFkdAt1WWKpDNQnV9lChoBmgJaA9DCNgRh2wgSnFAlIaUUpRoFUvXaBZHQLdVofR/mT11fZQoaAZoCWgPQwjEfHkBNpxyQJSGlFKUaBVL1GgWR0C3WnhfWtlqdX2UKGgGaAloD0MIGXPXEjJIc0CUhpRSlGgVS8hoFkdAt1p57tzCDXV9lChoBmgJaA9DCFOVtriGlXNAlIaUUpRoFUv/aBZHQLdahvPkaMt1fZQoaAZoCWgPQwh2ilWDcFhxQJSGlFKUaBVL5mgWR0C3Woo0IkZ8dX2UKGgGaAloD0MIswkwLH84cUCUhpRSlGgVS+RoFkdAt1qi8Zk08HV9lChoBmgJaA9DCAO2gxE7W3FAlIaUUpRoFUvtaBZHQLdatlnh86V1fZQoaAZoCWgPQwjRsu4fi9huQJSGlFKUaBVL7WgWR0C3WsDJ2dNGdX2UKGgGaAloD0MICqGDLuFkR0CUhpRSlGgVS5VoFkdAt1rI0k4WDnV9lChoBmgJaA9DCFHdXPwtmnFAlIaUUpRoFUv8aBZHQLda6yZ8a4t1fZQoaAZoCWgPQwgyPsxetpRxQJSGlFKUaBVL42gWR0C3WvSWJJoTdX2UKGgGaAloD0MI4JwRpb34b0CUhpRSlGgVS9toFkdAt1sLayrxRXV9lChoBmgJaA9DCLbWFwltGG9AlIaUUpRoFUveaBZHQLdbTb3oLXt1fZQoaAZoCWgPQwjKMsSx7jZxQJSGlFKUaBVL8GgWR0C3W00pI+W4dX2UKGgGaAloD0MIKChFKzc6cECUhpRSlGgVS9toFkdAt1tRfBvaUXV9lChoBmgJaA9DCIUJo1nZuXNAlIaUUpRoFUvxaBZHQLdbZ4BV+7V1fZQoaAZoCWgPQwiWr8vw33d0QJSGlFKUaBVL4WgWR0C3W2hQemvXdX2UKGgGaAloD0MIjxt+N53HcUCUhpRSlGgVS9VoFkdAt1uUT101ZXV9lChoBmgJaA9DCHSbcK/MBnBAlIaUUpRoFUvlaBZHQLdbudupCKJ1fZQoaAZoCWgPQwjHoX4XNgJwQJSGlFKUaBVL8mgWR0C3W9EdJaq0dX2UKGgGaAloD0MIbCQJwhUYc0CUhpRSlGgVS85oFkdAt1vlUDMeOnV9lChoBmgJaA9DCCJxj6XPDnBAlIaUUpRoFUvwaBZHQLdb7Bg/keZ1fZQoaAZoCWgPQwgjv36IzftyQJSGlFKUaBVL22gWR0C3W+7c9GI9dX2UKGgGaAloD0MIXmQCfs16cUCUhpRSlGgVTRUBaBZHQLdb86FuejF1fZQoaAZoCWgPQwgps0EmWYBzQJSGlFKUaBVL8mgWR0C3XAFdC3PSdX2UKGgGaAloD0MIxCPx8nSyUkCUhpRSlGgVS4xoFkdAt1wQm4RVZXV9lChoBmgJaA9DCO49XHLcRHBAlIaUUpRoFUvmaBZHQLdcLmF8G9p1fZQoaAZoCWgPQwhw0F59PLFwQJSGlFKUaBVL9GgWR0C3XDbZi/fwdX2UKGgGaAloD0MIVMcqpef+cUCUhpRSlGgVS+9oFkdAt1xQhq0ty3V9lChoBmgJaA9DCOP8TSjEcHBAlIaUUpRoFUvZaBZHQLdcc3pOerd1fZQoaAZoCWgPQwi54Az+PolyQJSGlFKUaBVL3GgWR0C3XHpha1TjdX2UKGgGaAloD0MICi5W1GC4cUCUhpRSlGgVS9BoFkdAt1x+sRxtHnV9lChoBmgJaA9DCCfChqfXr3JAlIaUUpRoFUv3aBZHQLdcskM1CPZ1fZQoaAZoCWgPQwgSpFLsaOxxQJSGlFKUaBVL42gWR0C3XMWb5M11dX2UKGgGaAloD0MI+IvZklWpbkCUhpRSlGgVS+JoFkdAt1zsAsCkoHV9lChoBmgJaA9DCH2W58HdqnFAlIaUUpRoFUvZaBZHQLddEMLWqcV1fZQoaAZoCWgPQwj8NO7N731xQJSGlFKUaBVL2mgWR0C3XRXHWBjGdX2UKGgGaAloD0MItd0E3zQ7b0CUhpRSlGgVS+9oFkdAt10YNXo1UHV9lChoBmgJaA9DCCFYVS+/+29AlIaUUpRoFUvjaBZHQLddKCaJAMV1fZQoaAZoCWgPQwipaoKo+yRzQJSGlFKUaBVL9mgWR0C3XTQ62fCidX2UKGgGaAloD0MInn3lQfoGc0CUhpRSlGgVS+loFkdAt10/dvbXYnV9lChoBmgJaA9DCJuNlZgnM3NAlIaUUpRoFUvPaBZHQLddS+XqqwR1fZQoaAZoCWgPQwhORL+2PghxQJSGlFKUaBVL+2gWR0C3XWXko4MndX2UKGgGaAloD0MIPPpfrsWDcECUhpRSlGgVS9FoFkdAt11w1DSgG3V9lChoBmgJaA9DCGr4FtYNJ3RAlIaUUpRoFUvLaBZHQLddjXKbKA91fZQoaAZoCWgPQwgcRGtFG0ByQJSGlFKUaBVNCgFoFkdAt12i5H3DenV9lChoBmgJaA9DCHb6QV2kt3BAlIaUUpRoFUvWaBZHQLddpDKoybh1fZQoaAZoCWgPQwjbTfBNE2ZwQJSGlFKUaBVL9mgWR0C3XdGvr4WUdX2UKGgGaAloD0MI4ICWriB1c0CUhpRSlGgVS9RoFkdAt13tkf9xZXV9lChoBmgJaA9DCOeKUkLwrnNAlIaUUpRoFUv7aBZHQLdeEjSofjl1fZQoaAZoCWgPQwhznNuEu0xxQJSGlFKUaBVLzWgWR0C3Xin0Gu9wdX2UKGgGaAloD0MIINJvX8fccECUhpRSlGgVS+NoFkdAt15UeMhounV9lChoBmgJaA9DCB+F61H44XJAlIaUUpRoFU0BAWgWR0C3Xlff8/D+dX2UKGgGaAloD0MIiUShZV3ybkCUhpRSlGgVS9loFkdAt15XcUM5O3V9lChoBmgJaA9DCFJkraGU/3FAlIaUUpRoFUvraBZHQLdeXuTibUh1fZQoaAZoCWgPQwjxZaIIKWVvQJSGlFKUaBVL2mgWR0C3XnCaiKzidX2UKGgGaAloD0MIKNTTR2ADc0CUhpRSlGgVS/9oFkdAt16Ycp9ZzXV9lChoBmgJaA9DCEKVmj3QgHBAlIaUUpRoFUvZaBZHQLdemXC0ngJ1fZQoaAZoCWgPQwjudr00BZ1xQJSGlFKUaBVL8WgWR0C3Xp8FQl8gdX2UKGgGaAloD0MIDLH6I0wrcUCUhpRSlGgVS+VoFkdAt160ht+CsnV9lChoBmgJaA9DCFbT9UQXY3FAlIaUUpRoFUv2aBZHQLde6nbZezF1fZQoaAZoCWgPQwiUMqmhTRtzQJSGlFKUaBVL6mgWR0C3Xu/OlfqpdX2UKGgGaAloD0MIrrg4Krf9b0CUhpRSlGgVS/loFkdAt18FR3u/lHV9lChoBmgJaA9DCBv1EI3usW9AlIaUUpRoFUvcaBZHQLdfDWmxdIJ1fZQoaAZoCWgPQwhStkjaja9yQJSGlFKUaBVL1GgWR0C3Xz0+HJtBdX2UKGgGaAloD0MIuFfmrfqSckCUhpRSlGgVS/hoFkdAt19LupjtonV9lChoBmgJaA9DCIoBEk1gBHFAlIaUUpRoFUvdaBZHQLdfh/+sHSp1fZQoaAZoCWgPQwjJsIo3cnFzQJSGlFKUaBVL6WgWR0C3X5hAnlXBdX2UKGgGaAloD0MIa5p3nKIUc0CUhpRSlGgVS9VoFkdAt1+XZZjhDXV9lChoBmgJaA9DCNzxJr8F43FAlIaUUpRoFUvkaBZHQLdfmszEaVF1fZQoaAZoCWgPQwiLFwtD5MtyQJSGlFKUaBVL72gWR0C3X6PFNtZWdX2UKGgGaAloD0MIxLXaw16pckCUhpRSlGgVTREBaBZHQLdfrCXyAhB1fZQoaAZoCWgPQwjryfyjbxVzQJSGlFKUaBVL3GgWR0C3X8bnLaEjdX2UKGgGaAloD0MIN8ZOeElBckCUhpRSlGgVS+toFkdAt1/Z0tAcDXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 620,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2again/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1116b3b971c64e251615c995643b89594cf67399f852e0e595fab8553636fcf
|
3 |
+
size 84893
|
ppo-LunarLander-v2again/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9e458506ae5a65a1f36ce92857de4eaf616d0354f6480c30f05a43b39f83960
|
3 |
+
size 43201
|
ppo-LunarLander-v2again/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2again/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b43861f9b88f36bf235d7893e19a16edc218feef3052423569d2828435b1adbe
|
3 |
+
size 185714
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 280.9175833251678, "std_reward": 13.250416719136936, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T21:15:36.126590"}
|