--- license: mit library_name: transformers datasets: - AI-MO/NuminaMath-CoT - KbsdJames/Omni-MATH - RUC-AIBOX/STILL-3-Preview-RL-Data - hendrycks/competition_math language: - en base_model: agentica-org/DeepScaleR-1.5B-Preview tags: - mlx --- # About: **A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.** *Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here:* https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview. (Base Model) Hugging Face - Converted it to MLX format with a quantization of 4-bits for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips). - If you want a bigger model size for improved accuracy, see the models below. # Other Types/Quants: | Link | Type | Size| Notes | |-------|-----------|-----------|-----------| | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx) | Full | 3.57 GB | **Best Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) | 8-bit | 1.90 GB | **Better Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx) | 6-bit | 1.46 GB | Good Quality| | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) | 4-bit | 1.01 GB | Bad Quality| # AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx The Model [AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) was converted to MLX format from [agentica-org/DeepScaleR-1.5B-Preview](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```