File size: 2,569 Bytes
9a793e3 3b78183 9a793e3 3b78183 91384d9 3b78183 91384d9 5a6eb65 91384d9 5a6eb65 3f44cf0 5a6eb65 3f44cf0 3b78183 dcf515c 3b78183 dcf515c 9a793e3 dcf515c 9a793e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
library_name: transformers
datasets:
- AI-MO/NuminaMath-CoT
- KbsdJames/Omni-MATH
- RUC-AIBOX/STILL-3-Preview-RL-Data
- hendrycks/competition_math
language:
- en
base_model: agentica-org/DeepScaleR-1.5B-Preview
tags:
- mlx
---
# About:
**A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.**
*Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here:*
https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview. (Base Model)
</a>
<a href="https://huggingface.co/agentica-org" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/Agentica-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
</a>
- Converted it to MLX format with a quantization of 4-bits for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips).
- If you want a bigger model size for improved accuracy, see the models below.
# Other Types/Quants:
| Link | Type | Size| Notes |
|-------|-----------|-----------|-----------|
| [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx) | Full | 3.57 GB | **Best Quality** |
| [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) | 8-bit | 1.90 GB | **Better Quality** |
| [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx) | 6-bit | 1.46 GB | Good Quality|
| [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) | 4-bit | 1.01 GB | Bad Quality|
# AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx
The Model [AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) was converted to MLX format from [agentica-org/DeepScaleR-1.5B-Preview](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) using mlx-lm version **0.20.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|