End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the biobert_json dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,11 +80,11 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.054 | 5.0 | 3060 | 0.
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.9400370317618573
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.970873786407767
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.9552065996092336
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9768401312705111
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the biobert_json dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0999
|
49 |
+
- Precision: 0.9400
|
50 |
+
- Recall: 0.9709
|
51 |
+
- F1: 0.9552
|
52 |
+
- Accuracy: 0.9768
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.4627 | 1.0 | 612 | 0.1159 | 0.9268 | 0.9554 | 0.9409 | 0.9701 |
|
84 |
+
| 0.1413 | 2.0 | 1224 | 0.1089 | 0.9274 | 0.9722 | 0.9493 | 0.9734 |
|
85 |
+
| 0.0953 | 3.0 | 1836 | 0.0993 | 0.9400 | 0.9684 | 0.9540 | 0.9767 |
|
86 |
+
| 0.0746 | 4.0 | 2448 | 0.0983 | 0.9399 | 0.9714 | 0.9554 | 0.9768 |
|
87 |
+
| 0.054 | 5.0 | 3060 | 0.0999 | 0.9400 | 0.9709 | 0.9552 | 0.9768 |
|
88 |
|
89 |
|
90 |
### Framework versions
|