File size: 3,642 Bytes
9856352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: other
base_model: north/t5_large_NCC_modern
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: North-T5-large_NO-QA-idun-20epoch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# North-T5-large_NO-QA-idun-20epoch

This model is a fine-tuned version of [north/t5_large_NCC_modern](https://huggingface.co/north/t5_large_NCC_modern) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5362
- Rouge1: 38.769
- Rouge2: 15.9471
- Rougel: 26.5124
- Rougelsum: 34.9947
- Gen Len: 94.6489

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.98  | 46   | 4.5352          | 17.0492 | 4.4759  | 10.456  | 15.2577   | 118.1702 |
| No log        | 1.99  | 93   | 1.9786          | 31.9727 | 10.2837 | 18.7297 | 28.8476   | 82.0426  |
| No log        | 2.99  | 140  | 1.6381          | 33.0332 | 11.5675 | 20.361  | 29.3026   | 74.0     |
| No log        | 4.0   | 187  | 1.5769          | 35.8586 | 13.2608 | 23.5819 | 32.6021   | 90.3298  |
| No log        | 4.98  | 233  | 1.5411          | 37.644  | 14.5558 | 24.9032 | 33.9629   | 94.6702  |
| No log        | 5.99  | 280  | 1.5349          | 36.9237 | 14.2153 | 24.9174 | 33.2155   | 85.8404  |
| No log        | 6.99  | 327  | 1.5120          | 38.1967 | 15.2791 | 25.5664 | 34.4922   | 92.9362  |
| No log        | 8.0   | 374  | 1.5094          | 38.8448 | 15.6077 | 26.2711 | 34.9747   | 93.0851  |
| No log        | 8.98  | 420  | 1.5133          | 38.0596 | 15.1036 | 26.38   | 34.2785   | 90.2021  |
| No log        | 9.99  | 467  | 1.5221          | 38.465  | 14.8936 | 26.014  | 34.6291   | 97.8085  |
| 2.5538        | 10.99 | 514  | 1.5207          | 39.806  | 16.0433 | 27.2048 | 35.8647   | 97.9149  |
| 2.5538        | 12.0  | 561  | 1.5194          | 38.1513 | 15.4085 | 26.1441 | 34.4682   | 88.4787  |
| 2.5538        | 12.98 | 607  | 1.5199          | 38.2157 | 15.363  | 26.0975 | 34.5609   | 94.9043  |
| 2.5538        | 13.99 | 654  | 1.5243          | 38.6499 | 15.4096 | 25.9533 | 34.6419   | 94.0638  |
| 2.5538        | 14.99 | 701  | 1.5297          | 38.1416 | 15.1179 | 26.139  | 34.6999   | 93.7447  |
| 2.5538        | 16.0  | 748  | 1.5320          | 38.6153 | 15.6661 | 26.3465 | 34.9576   | 95.7979  |
| 2.5538        | 16.98 | 794  | 1.5318          | 38.0022 | 15.5531 | 25.9628 | 34.2994   | 93.3936  |
| 2.5538        | 17.99 | 841  | 1.5364          | 37.9608 | 15.396  | 25.7531 | 34.3565   | 92.2553  |
| 2.5538        | 18.99 | 888  | 1.5352          | 38.9808 | 16.235  | 26.7723 | 35.2738   | 95.3085  |
| 2.5538        | 19.68 | 920  | 1.5362          | 38.769  | 15.9471 | 26.5124 | 34.9947   | 94.6489  |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.3.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2