import os import json import random from typing import Dict, List, Tuple, Optional, Any import numpy as np from PIL import Image from tqdm import tqdm import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop from torchvision.utils import save_image import lpips from diffusers import ( AutoencoderKL, AutoencoderKLWan, AutoencoderKLLTXVideo, AutoencoderKLQwenImage ) from scipy.stats import skew, kurtosis # ========================== Конфиг ========================== DEVICE = "cuda" DTYPE = torch.float16 IMAGE_FOLDER = "/home/recoilme/dataset/alchemist" MIN_SIZE = 1280 CROP_SIZE = 512 BATCH_SIZE = 10 MAX_IMAGES = 500 NUM_WORKERS = 4 SAMPLES_DIR = "vaetest" VAE_LIST = [ # ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"), # ("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None), ("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"), ("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"), #("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"), #("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"), #("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"), #("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"), # ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"), ("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"), ] # ========================== Утилиты ========================== def to_neg1_1(x: torch.Tensor) -> torch.Tensor: return x * 2 - 1 def to_0_1(x: torch.Tensor) -> torch.Tensor: return (x + 1) * 0.5 def safe_psnr(mse: float) -> float: if mse <= 1e-12: return float("inf") return 10.0 * float(np.log10(1.0 / mse)) def is_video_like_vae(vae) -> bool: # Wan и LTX-Video ждут [B, C, T, H, W] return isinstance(vae, (AutoencoderKLWan, AutoencoderKLLTXVideo,AutoencoderKLQwenImage)) def add_time_dim_if_needed(x: torch.Tensor, vae) -> torch.Tensor: if is_video_like_vae(vae) and x.ndim == 4: return x.unsqueeze(2) # -> [B, C, 1, H, W] return x def strip_time_dim_if_possible(x: torch.Tensor, vae) -> torch.Tensor: if is_video_like_vae(vae) and x.ndim == 5 and x.shape[2] == 1: return x.squeeze(2) # -> [B, C, H, W] return x @torch.no_grad() def sobel_edge_l1(real_0_1: torch.Tensor, fake_0_1: torch.Tensor) -> float: real = to_neg1_1(real_0_1) fake = to_neg1_1(fake_0_1) kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3) ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3) C = real.shape[1] kx = kx.to(real.dtype).repeat(C, 1, 1, 1) ky = ky.to(real.dtype).repeat(C, 1, 1, 1) def grad_mag(x): gx = F.conv2d(x, kx, padding=1, groups=C) gy = F.conv2d(x, ky, padding=1, groups=C) return torch.sqrt(gx * gx + gy * gy + 1e-12) return F.l1_loss(grad_mag(fake), grad_mag(real)).item() def flatten_channels(x: torch.Tensor) -> torch.Tensor: # -> [C, N*H*W] или [C, N*T*H*W] if x.ndim == 4: return x.permute(1, 0, 2, 3).reshape(x.shape[1], -1) elif x.ndim == 5: return x.permute(1, 0, 2, 3, 4).reshape(x.shape[1], -1) else: raise ValueError(f"Unexpected tensor ndim={x.ndim}") def _to_numpy_1d(x: Any) -> Optional[np.ndarray]: if x is None: return None if isinstance(x, (int, float)): return None if isinstance(x, torch.Tensor): x = x.detach().cpu().float().numpy() elif isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif isinstance(x, np.ndarray): x = x.astype(np.float32, copy=False) else: return None x = x.reshape(-1) return x def _to_float(x: Any) -> Optional[float]: if x is None: return None if isinstance(x, (int, float)): return float(x) if isinstance(x, np.ndarray) and x.size == 1: return float(x.item()) if isinstance(x, torch.Tensor) and x.numel() == 1: return float(x.item()) return None def get_norm_tensors_and_summary(vae, latent_like: torch.Tensor): """ Нормализация латентов: глобальная и поканальная. Применение: сначала глобальная (scalar), затем поканальная (vector). Если в конфиге есть несколько ключей — аккумулируем. """ cfg = getattr(vae, "config", vae) scale_keys = [ "latents_std" ] shift_keys = [ "latents_mean" ] C = latent_like.shape[1] nd = latent_like.ndim # 4 или 5 dev = latent_like.device dt = latent_like.dtype scale_global = getattr(vae.config, "scaling_factor", 1.0) shift_global = getattr(vae.config, "shift_factor", 0.0) if scale_global is None: scale_global = 1.0 if shift_global is None: shift_global = 0.0 scale_channel = np.ones(C, dtype=np.float32) shift_channel = np.zeros(C, dtype=np.float32) for k in scale_keys: v = getattr(cfg, k, None) if v is None: continue vec = _to_numpy_1d(v) if vec is not None and vec.size == C: scale_channel *= vec else: s = _to_float(v) if s is not None: scale_global *= s for k in shift_keys: v = getattr(cfg, k, None) if v is None: continue vec = _to_numpy_1d(v) if vec is not None and vec.size == C: shift_channel += vec else: s = _to_float(v) if s is not None: shift_global += s g_shape = [1] * nd c_shape = [1] * nd c_shape[1] = C t_scale_g = torch.tensor(scale_global, dtype=dt, device=dev).view(*g_shape) t_shift_g = torch.tensor(shift_global, dtype=dt, device=dev).view(*g_shape) t_scale_c = torch.from_numpy(scale_channel).to(device=dev, dtype=dt).view(*c_shape) t_shift_c = torch.from_numpy(shift_channel).to(device=dev, dtype=dt).view(*c_shape) summary = { "scale_global": float(scale_global), "shift_global": float(shift_global), "scale_channel_min": float(scale_channel.min()), "scale_channel_mean": float(scale_channel.mean()), "scale_channel_max": float(scale_channel.max()), "shift_channel_min": float(shift_channel.min()), "shift_channel_mean": float(shift_channel.mean()), "shift_channel_max": float(shift_channel.max()), } return t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary @torch.no_grad() def kl_divergence_per_image(mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor: kl_map = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) # [B, ...] return kl_map.float().view(kl_map.shape[0], -1).mean(dim=1) # [B] def sanitize_filename(name: str) -> str: name = name.replace("/", "_").replace("\\", "_").replace(" ", "_") return "".join(ch if (ch.isalnum() or ch in "._-") else "_" for ch in name) # ========================== Датасет ========================== class ImageFolderDataset(Dataset): def __init__(self, root_dir: str, extensions=(".png", ".jpg", ".jpeg", ".webp"), min_size=1024, crop_size=512, limit=None): paths = [] for root, _, files in os.walk(root_dir): for fname in files: if fname.lower().endswith(extensions): paths.append(os.path.join(root, fname)) if limit: paths = paths[:limit] valid = [] for p in tqdm(paths, desc="Проверяем файлы"): try: with Image.open(p) as im: im.verify() valid.append(p) except Exception: pass if not valid: raise RuntimeError(f"Нет валидных изображений в {root_dir}") random.shuffle(valid) self.paths = valid print(f"Найдено {len(self.paths)} изображений") self.transform = Compose([ Resize(min_size), CenterCrop(crop_size), ToTensor(), # 0..1, float32 ]) def __len__(self): return len(self.paths) def __getitem__(self, idx): with Image.open(self.paths[idx]) as img: img = img.convert("RGB") return self.transform(img) # ========================== Основное ========================== def main(): torch.set_grad_enabled(False) os.makedirs(SAMPLES_DIR, exist_ok=True) dataset = ImageFolderDataset(IMAGE_FOLDER, min_size=MIN_SIZE, crop_size=CROP_SIZE, limit=MAX_IMAGES) loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True) lpips_net = lpips.LPIPS(net="vgg").to(DEVICE).eval() # Загрузка VAE vaes: List[Tuple[str, object]] = [] print("\nЗагрузка VAE...") for human_name, vae_class, model_path, subfolder in VAE_LIST: try: vae = vae_class.from_pretrained(model_path, subfolder=subfolder, torch_dtype=DTYPE) vae = vae.to(DEVICE).eval() vaes.append((human_name, vae)) print(f" ✅ {human_name}") except Exception as e: print(f" ❌ {human_name}: {e}") if not vaes: print("Нет успешно загруженных VAE. Выходим.") return # Агрегаторы per_model_metrics: Dict[str, Dict[str, float]] = { name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "kl": 0.0, "count": 0.0} for name, _ in vaes } buffers_zmodel: Dict[str, List[torch.Tensor]] = {name: [] for name, _ in vaes} norm_summaries: Dict[str, Dict[str, float]] = {} # Флаг для сохранения первой картинки saved_first_for: Dict[str, bool] = {name: False for name, _ in vaes} for batch_0_1 in tqdm(loader, desc="Батчи"): batch_0_1 = batch_0_1.to(DEVICE, torch.float32) batch_neg1_1 = to_neg1_1(batch_0_1).to(DTYPE) for model_name, vae in vaes: x_in = add_time_dim_if_needed(batch_neg1_1, vae) posterior = vae.encode(x_in).latent_dist mu, logvar = posterior.mean, posterior.logvar # Реконструкция (детерминированно) z_raw_mode = posterior.mode() x_dec = vae.decode(z_raw_mode).sample # [-1, 1] x_dec = strip_time_dim_if_possible(x_dec, vae) x_rec_0_1 = to_0_1(x_dec.float()).clamp(0, 1) # Латенты для UNet: global -> channelwise z_raw_sample = posterior.sample() t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary = get_norm_tensors_and_summary(vae, z_raw_sample) if model_name not in norm_summaries: norm_summaries[model_name] = summary z_tmp = (z_raw_sample - t_shift_g) * t_scale_g z_model = (z_tmp - t_shift_c) * t_scale_c z_model = strip_time_dim_if_possible(z_model, vae) buffers_zmodel[model_name].append(z_model.detach().to("cpu", torch.float32)) # Сохранить первую картинку (оригинал и реконструкцию) для каждого VAE if not saved_first_for[model_name]: safe = sanitize_filename(model_name) orig_path = os.path.join(SAMPLES_DIR, f"{safe}_original.png") dec_path = os.path.join(SAMPLES_DIR, f"{safe}_decoded.png") save_image(batch_0_1[0:1].cpu(), orig_path) save_image(x_rec_0_1[0:1].cpu(), dec_path) saved_first_for[model_name] = True # Метрики по картинкам B = batch_0_1.shape[0] for i in range(B): gt = batch_0_1[i:i+1] rec = x_rec_0_1[i:i+1] mse = F.mse_loss(gt, rec).item() psnr = safe_psnr(mse) lp = float(lpips_net(gt, rec, normalize=True).mean().item()) edge = sobel_edge_l1(gt, rec) per_model_metrics[model_name]["mse"] += mse per_model_metrics[model_name]["psnr"] += psnr per_model_metrics[model_name]["lpips"] += lp per_model_metrics[model_name]["edge"] += edge # KL per-image kl_pi = kl_divergence_per_image(mu, logvar) # [B] per_model_metrics[model_name]["kl"] += float(kl_pi.sum().item()) per_model_metrics[model_name]["count"] += B # Усреднение метрик for name in per_model_metrics: c = max(1.0, per_model_metrics[name]["count"]) for k in ["mse", "psnr", "lpips", "edge", "kl"]: per_model_metrics[name][k] /= c # Подсчёт статистик латентов и нормальности per_model_latent_stats = {} for name, _ in vaes: if not buffers_zmodel[name]: continue Z = torch.cat(buffers_zmodel[name], dim=0) # [N, C, H, W] # Глобальные z_min = float(Z.min().item()) z_mean = float(Z.mean().item()) z_max = float(Z.max().item()) z_std = float(Z.std(unbiased=True).item()) # Пер-канально: skew/kurtosis Z_ch = flatten_channels(Z).numpy() # [C, *] C = Z_ch.shape[0] sk = np.zeros(C, dtype=np.float64) ku = np.zeros(C, dtype=np.float64) for c in range(C): v = Z_ch[c] sk[c] = float(skew(v, bias=False)) ku[c] = float(kurtosis(v, fisher=True, bias=False)) skew_min, skew_mean, skew_max = float(sk.min()), float(sk.mean()), float(sk.max()) kurt_min, kurt_mean, kurt_max = float(ku.min()), float(ku.mean()), float(ku.max()) mean_abs_skew = float(np.mean(np.abs(sk))) mean_abs_kurt = float(np.mean(np.abs(ku))) per_model_latent_stats[name] = { "Z_min": z_min, "Z_mean": z_mean, "Z_max": z_max, "Z_std": z_std, "skew_min": skew_min, "skew_mean": skew_mean, "skew_max": skew_max, "kurt_min": kurt_min, "kurt_mean": kurt_mean, "kurt_max": kurt_max, "mean_abs_skew": mean_abs_skew, "mean_abs_kurt": mean_abs_kurt, } # Печать параметров нормализации (shift/scale) print("\n=== Параметры нормализации латентов (как применялись) ===") for name, _ in vaes: if name not in norm_summaries: continue s = norm_summaries[name] print( f"{name:26s} | " f"shift_g={s['shift_global']:.6g} scale_g={s['scale_global']:.6g} | " f"shift_c[min/mean/max]=[{s['shift_channel_min']:.6g}, {s['shift_channel_mean']:.6g}, {s['shift_channel_max']:.6g}] | " f"scale_c[min/mean/max]=[{s['scale_channel_min']:.6g}, {s['scale_channel_mean']:.6g}, {s['scale_channel_max']:.6g}]" ) # Абсолютные метрики print("\n=== Абсолютные метрики реконструкции и латентов ===") for name, _ in vaes: if name not in per_model_latent_stats: continue m = per_model_metrics[name] s = per_model_latent_stats[name] print( f"{name:26s} | " f"MSE={m['mse']:.3e} PSNR={m['psnr']:.2f} LPIPS={m['lpips']:.3f} Edge={m['edge']:.3f} KL={m['kl']:.3f} | " f"Z[min/mean/max/std]=[{s['Z_min']:.3f}, {s['Z_mean']:.3f}, {s['Z_max']:.3f}, {s['Z_std']:.3f}] | " f"Skew[min/mean/max]=[{s['skew_min']:.3f}, {s['skew_mean']:.3f}, {s['skew_max']:.3f}] | " f"Kurt[min/mean/max]=[{s['kurt_min']:.3f}, {s['kurt_mean']:.3f}, {s['kurt_max']:.3f}]" ) # Сравнение с первой моделью baseline = vaes[0][0] print("\n=== Сравнение с первой моделью (проценты) ===") print(f"| {'Модель':26s} | {'MSE':>9s} | {'PSNR':>9s} | {'LPIPS':>9s} | {'Edge':>9s} | {'Skew|0':>9s} | {'Kurt|0':>9s} |") print(f"|{'-'*28}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|") b_m = per_model_metrics[baseline] b_s = per_model_latent_stats[baseline] for name, _ in vaes: m = per_model_metrics[name] s = per_model_latent_stats[name] mse_pct = (b_m["mse"] / max(1e-12, m["mse"])) * 100.0 # меньше лучше psnr_pct = (m["psnr"] / max(1e-12, b_m["psnr"])) * 100.0 # больше лучше lpips_pct= (b_m["lpips"] / max(1e-12, m["lpips"])) * 100.0 # меньше лучше edge_pct = (b_m["edge"] / max(1e-12, m["edge"])) * 100.0 # меньше лучше skew0_pct = (b_s["mean_abs_skew"] / max(1e-12, s["mean_abs_skew"])) * 100.0 kurt0_pct = (b_s["mean_abs_kurt"] / max(1e-12, s["mean_abs_kurt"])) * 100.0 if name == baseline: print(f"| {name:26s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} |") else: print(f"| {name:26s} | {mse_pct:8.1f}% | {psnr_pct:8.1f}% | {lpips_pct:8.1f}% | {edge_pct:8.1f}% | {skew0_pct:8.1f}% | {kurt0_pct:8.1f}% |") # ========================== Коррекции для последнего VAE + сохранение в JSON ========================== last_name = vaes[-1][0] if buffers_zmodel[last_name]: Z = torch.cat(buffers_zmodel[last_name], dim=0) # [N, C, H, W] # Глобальная коррекция (по всем каналам/пикселям) z_mean = float(Z.mean().item()) z_std = float(Z.std(unbiased=True).item()) correction_global = { "shift": -z_mean, "scale": (1.0 / z_std) if z_std > 1e-12 else 1.0 } # Поканальная коррекция Z_ch = flatten_channels(Z) # [C, M] ch_means_t = Z_ch.mean(dim=1) # [C] ch_stds_t = Z_ch.std(dim=1, unbiased=True) + 1e-12 # [C] ch_means = [float(x) for x in ch_means_t.tolist()] ch_stds = [float(x) for x in ch_stds_t.tolist()] correction_per_channel = [ {"shift": float(-m), "scale": float(1.0 / s)} for m, s in zip(ch_means, ch_stds) ] print(f"\n=== Доп. коррекция для {last_name} (поверх VAE-нормализации) ===") print(f"global_correction = {correction_global}") print(f"channelwise_means = {ch_means}") print(f"channelwise_stds = {ch_stds}") print(f"channelwise_correction = {correction_per_channel}") # Сохранение в JSON json_path = os.path.join(SAMPLES_DIR, f"{sanitize_filename(last_name)}_correction.json") to_save = { "model_name": last_name, "vae_normalization_summary": norm_summaries.get(last_name, {}), "global_correction": correction_global, "per_channel_means": ch_means, "per_channel_stds": ch_stds, "per_channel_correction": correction_per_channel, "apply_order": { "forward": "z_model -> (z - global_shift)*global_scale -> (per-channel: (z - mean_c)/std_c)", "inverse": "z_corr -> (per-channel: z*std_c + mean_c) -> (z/global_scale + global_shift)" }, "note": "Эти коэффициенты рассчитаны по z_model (после встроенных VAE shift/scale), чтобы привести распределение к N(0,1)." } with open(json_path, "w", encoding="utf-8") as f: json.dump(to_save, f, ensure_ascii=False, indent=2) print("Corrections JSON saved to:", os.path.abspath(json_path)) print("\n✅ Готово. Сэмплы сохранены в:", os.path.abspath(SAMPLES_DIR)) if __name__ == "__main__": main()