base_model: mistralai/Mistral-7B-v0.1 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/UFOs-Pretraining-V1.0 load_in_8bit: false load_in_4bit: false strict: false pretraining_dataset: - name: path: AiAF/pretraining.jsonl split: "train" text_column: "text" # column in dataset with the data, usually `text` type: pretrain trust_remote_code: true skip: 0 # number of rows of data to skip over from the beginning dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs max_steps: 100000 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: "UFO_LLM_Pretraining" wandb_entity: wandb_watch: "all" wandb_name: "UFO_LLM_Pretraining-V1.0" wandb_log_model: "false" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: