--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/Phi-3.5-mini-instruct model-index: - name: phi3.5-hugcoder results: [] --- # phi3.5-hugcoder This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.1 | 10 | 0.5937 | | No log | 0.2 | 20 | 0.4756 | | No log | 0.3 | 30 | 0.4394 | | No log | 0.4 | 40 | 0.4419 | | 0.5311 | 0.5 | 50 | 0.4827 | | 0.5311 | 0.6 | 60 | 0.5897 | | 0.5311 | 0.7 | 70 | 0.5495 | | 0.5311 | 0.8 | 80 | 0.6268 | | 0.5311 | 0.9 | 90 | 0.6744 | | 0.1769 | 1.0 | 100 | 0.6832 | ### Framework versions - PEFT 0.11.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1