Update README.md
Browse files
README.md
CHANGED
|
@@ -1,172 +1,8 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
| 4 |
-
- hindi
|
| 5 |
-
- bilingual
|
| 6 |
license: llama2
|
| 7 |
language:
|
| 8 |
-
- hi
|
| 9 |
- en
|
| 10 |
---
|
| 11 |
|
| 12 |
-
# LLama3
|
| 13 |
-
|
| 14 |
-
## Overview
|
| 15 |
-
|
| 16 |
-
LLama3-Gaja-Hindi-8B-v0.1 is an extension of the Ambari series, a bilingual English/Hindi model developed and released by [Cognitivelab.in](https://www.cognitivelab.in/). This model is specialized for natural language understanding tasks, particularly in the context of instructional pairs. It is built upon the [Llama3 8b](https://huggingface.co/meta-llama/Meta-Llama-3-8B) model, utilizing a fine-tuning process with a curated dataset of translated instructional pairs.
|
| 17 |
-
|
| 18 |
-
<img src="https://cdn-uploads.huggingface.co/production/uploads/6442d975ad54813badc1ddf7/G0u9L6RQJFinST0chQmfL.jpeg" width="500px">
|
| 19 |
-
|
| 20 |
-
## Generate
|
| 21 |
-
```python
|
| 22 |
-
import torch
|
| 23 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 24 |
-
from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
|
| 25 |
-
|
| 26 |
-
model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
|
| 27 |
-
tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
|
| 28 |
-
|
| 29 |
-
# Existing messages list
|
| 30 |
-
messages = [
|
| 31 |
-
{"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
|
| 32 |
-
{"role": "user", "content": "Who are you"}
|
| 33 |
-
]
|
| 34 |
-
|
| 35 |
-
input_ids = tokenizer.apply_chat_template(
|
| 36 |
-
messages,
|
| 37 |
-
add_generation_prompt=True,
|
| 38 |
-
# tokenize=False,
|
| 39 |
-
return_tensors="pt"
|
| 40 |
-
).to("cuda")
|
| 41 |
-
|
| 42 |
-
outputs = model.generate(
|
| 43 |
-
input_ids,
|
| 44 |
-
max_new_tokens=256,
|
| 45 |
-
eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
| 46 |
-
do_sample=True,
|
| 47 |
-
temperature=0.6,
|
| 48 |
-
top_p=0.9,
|
| 49 |
-
)
|
| 50 |
-
response = outputs[0][input_ids.shape[-1]:]
|
| 51 |
-
print(tokenizer.decode(response, skip_special_tokens=True))
|
| 52 |
-
```
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
## Multi-turn Chat
|
| 56 |
-
|
| 57 |
-
To use the Ambari-7B-Instruct-v0.1 model, you can follow the example code below:
|
| 58 |
-
|
| 59 |
-
```python
|
| 60 |
-
import torch
|
| 61 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 62 |
-
from transformers import GenerationConfig, TextStreamer , TextIteratorStreamer
|
| 63 |
-
|
| 64 |
-
model = AutoModelForCausalLM.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", torch_dtype=torch.bfloat16).to("cuda")
|
| 65 |
-
tokenizer = AutoTokenizer.from_pretrained("Cognitive-Lab/LLama3-Gaja-Hindi-8B-v0.1", trust_remote_code=True)
|
| 66 |
-
|
| 67 |
-
# Existing messages list
|
| 68 |
-
messages = [
|
| 69 |
-
{"role": "system", "content": " You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model (LLM), proficient in English and Hindi. You can respond in both languages based on the user's request."},
|
| 70 |
-
]
|
| 71 |
-
|
| 72 |
-
# Function to add user input and generate response
|
| 73 |
-
def process_user_input(user_input):
|
| 74 |
-
global messages
|
| 75 |
-
# Add user's input to messages list
|
| 76 |
-
messages.append({"role": "user", "content": user_input})
|
| 77 |
-
|
| 78 |
-
# Prepare the prompt for generation
|
| 79 |
-
prompt_formatted_message = tokenizer.apply_chat_template(
|
| 80 |
-
messages,
|
| 81 |
-
add_generation_prompt=True,
|
| 82 |
-
tokenize=False
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
# Configure generation parameters
|
| 86 |
-
generation_config = GenerationConfig(
|
| 87 |
-
repetition_penalty=1.2,
|
| 88 |
-
max_new_tokens=8000,
|
| 89 |
-
temperature=0.2,
|
| 90 |
-
top_p=0.95,
|
| 91 |
-
top_k=40,
|
| 92 |
-
bos_token_id=tokenizer.bos_token_id,
|
| 93 |
-
eos_token_id=tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
| 94 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 95 |
-
do_sample=True,
|
| 96 |
-
use_cache=True,
|
| 97 |
-
return_dict_in_generate=True,
|
| 98 |
-
output_attentions=False,
|
| 99 |
-
output_hidden_states=False,
|
| 100 |
-
output_scores=False,
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
streamer = TextStreamer(tokenizer)
|
| 104 |
-
batch = tokenizer(str(prompt_formatted_message.strip()), return_tensors="pt")
|
| 105 |
-
print("\033[32mResponse: \033[0m") # Print an empty response
|
| 106 |
-
# Generate response
|
| 107 |
-
generated = model.generate(
|
| 108 |
-
inputs=batch["input_ids"].to("cuda"),
|
| 109 |
-
generation_config=generation_config,
|
| 110 |
-
streamer=streamer,
|
| 111 |
-
|
| 112 |
-
)
|
| 113 |
-
|
| 114 |
-
# Extract and format assistant's response
|
| 115 |
-
# print(tokenizer.decode(generated["sequences"].cpu().tolist()[0]))
|
| 116 |
-
assistant_response = tokenizer.decode(generated["sequences"].cpu().tolist()[0])
|
| 117 |
-
# Find the last occurrence of "assistant" and empty string ("")
|
| 118 |
-
assistant_start_index = assistant_response.rfind("<|start_header_id|>assistant<|end_header_id|>")
|
| 119 |
-
empty_string_index = assistant_response.rfind("<|eot_id|>")
|
| 120 |
-
|
| 121 |
-
# Extract the text between the last "assistant" and ""
|
| 122 |
-
if assistant_start_index != -1 and empty_string_index != -1:
|
| 123 |
-
final_response = assistant_response[assistant_start_index + len("<|start_header_id|>assistant<|end_header_id|>") : empty_string_index]
|
| 124 |
-
else:
|
| 125 |
-
# final_response = assistant_response # If indices not found, use the whole response
|
| 126 |
-
assert "Filed to generate multi turn prompt formate"
|
| 127 |
-
|
| 128 |
-
# Append the extracted response to the messages list
|
| 129 |
-
messages.append({"role": "assistant", "content": final_response})
|
| 130 |
-
# messages.append({"role": "assistant", "content": assistant_response})
|
| 131 |
-
|
| 132 |
-
# Print assistant's response
|
| 133 |
-
# print(f"Assistant: {assistant_response}")
|
| 134 |
-
|
| 135 |
-
# Main interaction loop
|
| 136 |
-
while True:
|
| 137 |
-
print("=================================================================================")
|
| 138 |
-
user_input = input("Input: ") # Prompt user for input
|
| 139 |
-
|
| 140 |
-
# Check if user_input is empty
|
| 141 |
-
if not user_input.strip(): # .strip() removes any leading or trailing whitespace
|
| 142 |
-
break # Break out of the loop if input is empty
|
| 143 |
-
# Print response placeholder
|
| 144 |
-
process_user_input(user_input) # Process user's input and generate response
|
| 145 |
-
|
| 146 |
-
```
|
| 147 |
-
|
| 148 |
-
## Prompt formate
|
| 149 |
-
|
| 150 |
-
system prompt = `You are Gaja, an AI assistant created by Cognitivelab and trained on top of Llama 3 Large language model(LLM), proficient in English and Hindi. You can respond in both languages based on the users request.`
|
| 151 |
-
```
|
| 152 |
-
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
| 153 |
-
|
| 154 |
-
{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 155 |
-
|
| 156 |
-
{{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 157 |
-
|
| 158 |
-
{{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 159 |
-
|
| 160 |
-
{{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 161 |
-
```
|
| 162 |
-
|
| 163 |
-
## Benchmarks
|
| 164 |
-
coming soon
|
| 165 |
-
|
| 166 |
-
## Bilingual Instruct Fine-tuning
|
| 167 |
-
|
| 168 |
-
The model underwent a pivotal stage of supervised fine-tuning with low-rank adaptation, focusing on bilingual instruct fine-tuning. This approach involved training the model to respond adeptly in either English or Hindi based on the language specified in the user prompt or instruction.
|
| 169 |
-
|
| 170 |
-
## References
|
| 171 |
-
|
| 172 |
-
- [Ambari-7B-Instruct Model](https://huggingface.co/Cognitive-Lab/Ambari-7B-Instruct-v0.1)
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
|
|
|
|
|
|
|
|
|
| 3 |
license: llama2
|
| 4 |
language:
|
|
|
|
| 5 |
- en
|
| 6 |
---
|
| 7 |
|
| 8 |
+
# LLama3 Tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|