File size: 65,943 Bytes
c6749b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 |
#!/usr/bin/env python3
"""
Pentachoron Constellation with Greyscale PentaFreq Encoder
Optimized with Batched Operations and Complete Loss Functions
Apache License 2.0
Author: AbstractPhil
Assistance: GPT 4o, GPT 5, Claude Opus 4.1, Claude Sonnet 4.0, Gemini
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import time
import torch
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import random
# ============================================================
# CONFIGURATION
# ============================================================
# Clear CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Hyperparameters
config = {
'input_dim': 64,
'base_dim': 64,
'batch_size': 2048,
'epochs': 50,
'lr': 1e-1,
'num_heads': 8,
'num_pentachoron_pairs': 1,
'loss_weight_scalar': 0.1,
'lambda_separation': 0.29514,
'temp': 0.70486,
"weight_decay": 1e-5,
}
print("\n" + "="*60)
print("PENTACHORON CONSTELLATION CONFIGURATION")
print("="*60)
for key, value in config.items():
print(f"{key:20}: {value}")
# ============================================================
# DATASET
# ============================================================
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.view(-1))
])
# ============================================================
# SELECT YOUR DATASET HERE!
# ============================================================
DATASET_NAME = "OCTMNIST" # Change this to any dataset below!
# Available datasets (all 28x28):
AVAILABLE_DATASETS = {
"MNIST": "Classic handwritten digits (10 classes)",
"FashionMNIST": "Fashion items (10 classes) - The tough one!",
"KMNIST": "Kuzushiji-MNIST - Japanese characters (10 classes)",
"EMNIST": "Extended MNIST - Letters & digits (47 classes)",
"QMNIST": "MNIST with better test set (10 classes)",
"USPS": "US Postal Service digits (10 classes)",
# MedMNIST variants (medical images)
"BloodMNIST": "Blood cell types (8 classes)",
"PathMNIST": "Pathology images (9 classes)",
"OCTMNIST": "Retinal OCT (4 classes)",
"PneumoniaMNIST": "Chest X-Ray (2 classes)",
"DermaMNIST": "Dermatoscope images (7 classes)",
"RetinaMNIST": "Retina fundus (5 classes)",
"BreastMNIST": "Breast ultrasound (2 classes)",
"OrganAMNIST": "Abdominal CT - Axial (11 classes)",
"OrganCMNIST": "Abdominal CT - Coronal (11 classes)",
"OrganSMNIST": "Abdominal CT - Sagittal (11 classes)",
"TissueMNIST": "Tissue cells (8 classes)",
}
# ---------- MedMNIST INFO + helpers ----------
try:
import medmnist
from medmnist import INFO as MED_INFO # official dict
except Exception:
medmnist = None
MED_INFO = None
# Fallback labels/tasks/channels for the 2D sets you listed.
# Source: MedMNIST v2 dataset card / builder (labels) and project docs (tasks/channels).
FALLBACK_INFO = {
"bloodmnist": {
"python_class": "BloodMNIST",
"task": "multi-class",
"n_channels": 3,
"label": {
"0": "basophil",
"1": "eosinophil",
"2": "erythroblast",
"3": "immature granulocytes(myelocytes, metamyelocytes and promyelocytes)",
"4": "lymphocyte",
"5": "monocyte",
"6": "neutrophil",
"7": "platelet",
},
},
"pathmnist": {
"python_class": "PathMNIST",
"task": "multi-class",
"n_channels": 3,
"label": {
"0": "adipose",
"1": "background",
"2": "debris",
"3": "lymphocytes",
"4": "mucus",
"5": "smooth muscle",
"6": "normal colon mucosa",
"7": "cancer-associated stroma",
"8": "colorectal adenocarcinoma epithelium",
},
},
"octmnist": {
"python_class": "OCTMNIST",
"task": "multi-class",
"n_channels": 1,
"label": {
"0": "choroidal neovascularization",
"1": "diabetic macular edema",
"2": "drusen",
"3": "normal",
},
},
"pneumoniamnist": {
"python_class": "PneumoniaMNIST",
"task": "binary-class",
"n_channels": 1,
"label": {
"0": "normal",
"1": "pneumonia",
},
},
"dermamnist": {
"python_class": "DermaMNIST",
"task": "multi-class",
"n_channels": 3,
"label": {
"0": "actinic keratoses and intraepithelial carcinoma",
"1": "basal cell carcinoma",
"2": "benign keratosis-like lesions",
"3": "dermatofibroma",
"4": "melanoma",
"5": "melanocytic nevi",
"6": "vascular lesions",
},
},
"retinamnist": {
"python_class": "RetinaMNIST",
"task": "ordinal-regression",
"n_channels": 3,
"label": { # ordinal 0..4
"0": "0",
"1": "1",
"2": "2",
"3": "3",
"4": "4",
},
},
"breastmnist": {
"python_class": "BreastMNIST",
"task": "binary-class",
"n_channels": 1,
"label": {
"0": "malignant",
"1": "normal, benign",
},
},
"tissuemnist": {
"python_class": "TissueMNIST",
"task": "multi-class",
"n_channels": 1,
"label": {
"0": "Collecting Duct, Connecting Tubule",
"1": "Distal Convoluted Tubule",
"2": "Glomerular endothelial cells",
"3": "Interstitial endothelial cells",
"4": "Leukocytes",
"5": "Podocytes",
"6": "Proximal Tubule Segments",
"7": "Thick Ascending Limb",
},
},
# The Organ* 2D sets share the same 11 organ names; channels are grayscale.
"organamnist": {
"python_class": "OrganAMNIST",
"task": "multi-class",
"n_channels": 1,
"label": {
"0": "liver", "1": "kidney-right", "2": "kidney-left",
"3": "femur-right", "4": "femur-left", "5": "bladder",
"6": "heart", "7": "lung-right", "8": "lung-left",
"9": "spleen", "10": "pancreas",
},
},
"organcmnist": {
"python_class": "OrganCMNIST",
"task": "multi-class",
"n_channels": 1,
"label": {
"0": "liver", "1": "kidney-right", "2": "kidney-left",
"3": "femur-right", "4": "femur-left", "5": "bladder",
"6": "heart", "7": "lung-right", "8": "lung-left",
"9": "spleen", "10": "pancreas",
},
},
"organsmnist": {
"python_class": "OrganSMNIST",
"task": "multi-class",
"n_channels": 1,
"label": {
"0": "liver", "1": "kidney-right", "2": "kidney-left",
"3": "femur-right", "4": "femur-left", "5": "bladder",
"6": "heart", "7": "lung-right", "8": "lung-left",
"9": "spleen", "10": "pancreas",
},
},
}
def as_class_indices(t: torch.Tensor) -> torch.Tensor:
"""
Normalize MedMNIST-style labels to 1D Long class indices for CE loss.
- Accepts shapes: [], [B], [B,1], or one-hot [B,C]
- Returns shape [B], dtype torch.long
"""
if t.ndim == 0: # scalar
return t.long().view(1)
if t.ndim == 1:
return t.long()
# ndims >= 2
if t.size(-1) == 1:
t = t.squeeze(-1)
return t.long()
# likely one-hot [B,C]
return t.argmax(dim=-1).long()
def get_med_info(flag: str) -> dict:
"""Return official medmnist.INFO[flag] if available, else fallback."""
if MED_INFO is not None and flag in MED_INFO:
return MED_INFO[flag]
if flag in FALLBACK_INFO:
return FALLBACK_INFO[flag]
raise KeyError(f"Unknown MedMNIST flag: {flag}")
def make_med_transform(n_channels: int):
"""
ToTensor -> ensure single gray channel -> flatten to 784 for your pipeline.
We keep your 28x28 target and collapse channels deterministically.
"""
return transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda t: t[:1, :, :] if t.shape[0] > 1 else t), # pick first channel if RGB
transforms.Lambda(lambda t: t.view(-1)),
])
def med_class_names_from_info(info: dict):
"""Convert label dict -> ordered list by index: ['name0','name1',...]"""
label_dict = info["label"]
return [label_dict[str(i)] for i in range(len(label_dict))]
# ============================================================
# DATASET LOADER
# ============================================================
def get_dataset(name=DATASET_NAME, batch_size=128, num_workers=2):
"""
Universal loader for all MNIST-like datasets.
Returns train_loader, test_loader, num_classes, class_names
"""
print(f"\n{'='*60}")
print(f"Loading {name}")
print(f"Description: {AVAILABLE_DATASETS.get(name, 'Unknown dataset')}")
print(f"{'='*60}")
# Standard transform for all datasets
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.view(-1)) # Flatten to 784
])
# Special transform for grayscale conversion if needed
transform_gray = transforms.Compose([
transforms.Grayscale(num_output_channels=config.get("n_channels", 1)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.view(-1))
])
# STANDARD TORCHVISION DATASETS
if name == "MNIST":
train_dataset = datasets.MNIST(root="./data", train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root="./data", train=False, transform=transform, download=True)
num_classes = 10
class_names = [str(i) for i in range(10)]
elif name == "FashionMNIST":
train_dataset = datasets.FashionMNIST(root="./data", train=True, transform=transform, download=True)
test_dataset = datasets.FashionMNIST(root="./data", train=False, transform=transform, download=True)
num_classes = 10
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
elif name == "KMNIST":
train_dataset = datasets.KMNIST(root="./data", train=True, transform=transform, download=True)
test_dataset = datasets.KMNIST(root="./data", train=False, transform=transform, download=True)
num_classes = 10
class_names = ['お', 'き', 'す', 'つ', 'な', 'は', 'ま', 'や', 'れ', 'を']
elif name == "EMNIST":
# Using 'balanced' split - 47 classes (digits + letters)
train_dataset = datasets.EMNIST(root="./data", split='balanced', train=True, transform=transform, download=True)
test_dataset = datasets.EMNIST(root="./data", split='balanced', train=False, transform=transform, download=True)
num_classes = 47
# class_names = [str(i) for i in range(47)] # Mix of digits and letters
class_names = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'a', 'b', 'd', 'e', 'f', 'g', 'h', 'n', 'q', 'r', 't'
]
elif name == "QMNIST":
train_dataset = datasets.QMNIST(root="./data", what='train', transform=transform, download=True)
test_dataset = datasets.QMNIST(root="./data", what='test', transform=transform, download=True)
num_classes = 10
class_names = [str(i) for i in range(10)]
elif name == "USPS":
# USPS is 16x16, need to resize
transform_usps = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.view(-1))
])
train_dataset = datasets.USPS(root="./data", train=True, transform=transform_usps, download=True)
test_dataset = datasets.USPS(root="./data", train=False, transform=transform_usps, download=True)
num_classes = 10
class_names = [str(i) for i in range(10)]
# MEDMNIST DATASETS
elif name in ["BloodMNIST", "PathMNIST", "OCTMNIST", "PneumoniaMNIST",
"DermaMNIST", "RetinaMNIST", "BreastMNIST",
"OrganAMNIST", "OrganCMNIST", "OrganSMNIST", "TissueMNIST"]:
# Map UI names to medmnist flags
medmnist_map = {
"BloodMNIST": "bloodmnist",
"PathMNIST": "pathmnist",
"OCTMNIST": "octmnist",
"PneumoniaMNIST": "pneumoniamnist",
"DermaMNIST": "dermamnist",
"RetinaMNIST": "retinamnist",
"BreastMNIST": "breastmnist",
"OrganAMNIST": "organamnist",
"OrganCMNIST": "organcmnist",
"OrganSMNIST": "organsmnist",
"TissueMNIST": "tissuemnist",
}
dataset_flag = medmnist_map[name]
info = get_med_info(dataset_flag)
# Require the package to actually load data
if medmnist is None:
raise ImportError(
"medmnist is not installed. Run: pip install medmnist\n"
f"(INFO fallback is provided; DataClass={info['python_class']} needs the package.)"
)
DataClass = getattr(medmnist, info["python_class"])
# Transform: force 1-channel grayscale then flatten to 784
transform_med = make_med_transform(info["n_channels"])
# 28x28 size (default); you can bump to 64/128/224 by size=...
train_dataset = DataClass(split='train', transform=transform_med, download=True, size=28)
test_dataset = DataClass(split='test', transform=transform_med, download=True, size=28)
num_classes = len(info["label"])
class_names = med_class_names_from_info(info)
print(f" MedMNIST Dataset: {dataset_flag}")
print(f" Task: {info['task']}")
print(f" Classes: {num_classes} | Channels: {info['n_channels']}")
else:
raise ValueError(f"Unknown dataset: {name}. Choose from: {list(AVAILABLE_DATASETS.keys())}")
# Create data loaders
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
print(f"\nDataset loaded successfully!")
print(f" Train samples: {len(train_dataset):,}")
print(f" Test samples: {len(test_dataset):,}")
print(f" Number of classes: {num_classes}")
print(f" Input shape: 28x28 = 784 dimensions")
return train_loader, test_loader, num_classes, class_names
#train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True, num_workers=2)
#test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False, num_workers=2)
train_loader, test_loader, num_classes, class_names = get_dataset(DATASET_NAME, config['batch_size'])
config['num_classes'] = num_classes
FASHION_CLASSES = class_names #[
# '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
#'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
#'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'
#]
print(f"\nDataset loaded:")
#print(f" Train: {len(train_dataset):,} samples")
#print(f" Test: {len(test_dataset):,} samples")
# ============================
# ADDITIONS: saving & hub push
# ============================
import os, json, math, platform, sys, shutil, zipfile
from pathlib import Path
from datetime import datetime
# Auto-install per Phil’s preference
def _ensure(pkg, pip_name=None):
pip_name = pip_name or pkg
try:
__import__(pkg)
except Exception:
print(f"[setup] Installing {pip_name} ...")
os.system(f"{sys.executable} -m pip install -q {pip_name}")
_ensure("safetensors")
_ensure("huggingface_hub")
_ensure("psutil")
_ensure("pandas")
from safetensors.torch import save_file as save_safetensors
from huggingface_hub import HfApi, create_repo, whoami, login
from torch.utils.tensorboard import SummaryWriter
import psutil
import pandas as pd
def _param_count(model: torch.nn.Module) -> int:
return sum(p.numel() for p in model.parameters())
def _timestamp():
return datetime.now().strftime("%Y%m%d-%H%M%S")
def _resolve_repo_id(config: dict) -> str:
rid = os.getenv("PENTACHORA_HF_REPO") or config.get("hf_repo_id")
if not rid:
raise RuntimeError(
"Hugging Face repo id is not set. Set config['hf_repo_id'] or PENTACHORA_HF_REPO env var."
)
return rid
def _hf_login_if_needed():
# Use existing login if available; otherwise try HF_TOKEN
try:
_ = whoami()
return
except Exception:
token = os.getenv("HF_TOKEN")
if not token:
print("[huggingface] No active login and HF_TOKEN not set; if push fails, run huggingface-cli login.")
return
login(token=token, add_to_git_credential=True)
def _ensure_repo(repo_id: str):
api = HfApi()
create_repo(repo_id=repo_id, private=False, exist_ok=True, repo_type="model")
return api
def _zip_dir(src_dir: Path, zip_path: Path):
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as z:
for p in src_dir.rglob("*"):
z.write(p, arcname=p.relative_to(src_dir))
def save_and_push_artifacts(
encoder: nn.Module,
constellation: nn.Module,
diagnostic_head: nn.Module,
config: dict,
class_names: list,
history: dict,
best_acc: float,
tb_log_dir: Path,
last_confusion_png: Path | None,
repo_subdir_root: str = "pentachora-adaptive-encoded",
):
"""
Saves safetensors + metadata locally and pushes to HF Hub under:
<repo>/<repo_subdir_root>/<timestamp>/
"""
ts = _timestamp()
repo_id = _resolve_repo_id(config)
_hf_login_if_needed()
api = _ensure_repo(repo_id)
# ---------- local layout ----------
base_out = Path("artifacts") / repo_subdir_root / ts
base_out.mkdir(parents=True, exist_ok=True)
# 1) Weights
weights_dir = base_out / "weights"
weights_dir.mkdir(parents=True, exist_ok=True)
# Save each module separately to keep them composable
save_safetensors({k: v.cpu() for k, v in encoder.state_dict().items()}, str(weights_dir / "encoder.safetensors"))
save_safetensors({k: v.cpu() for k, v in constellation.state_dict().items()}, str(weights_dir / "constellation.safetensors"))
save_safetensors({k: v.cpu() for k, v in diagnostic_head.state_dict().items()}, str(weights_dir / "diagnostic_head.safetensors"))
# 2) Config
conf_path = base_out / "config.json"
with conf_path.open("w", encoding="utf-8") as f:
json.dump(config, f, indent=2, sort_keys=True)
# 3) History (per-epoch metrics) and CSV
hist_json = base_out / "history.json"
with hist_json.open("w", encoding="utf-8") as f:
json.dump(history, f, indent=2, sort_keys=True)
# CSV
max_len = max(len(history.get("train_loss", [])),
len(history.get("train_acc", [])),
len(history.get("test_acc", [])))
df = pd.DataFrame({
"epoch": list(range(1, max_len + 1)),
"train_loss": history.get("train_loss", [math.nan]*max_len),
"train_acc": history.get("train_acc", [math.nan]*max_len),
"test_acc": history.get("test_acc", [math.nan]*max_len),
})
df.to_csv(base_out / "history.csv", index=False)
# 4) Manifest
manifest = {
"timestamp": ts,
"repo_id": repo_id,
"subdirectory": f"{repo_subdir_root}/{ts}",
"dataset_name": DATASET_NAME,
"class_names": class_names,
"num_classes": len(class_names),
"models": {
"encoder": {"params": _param_count(encoder)},
"constellation": {"params": _param_count(constellation)},
"diagnostic_head": {"params": _param_count(diagnostic_head)},
},
"results": {
"best_test_accuracy": best_acc,
},
"environment": {
"python": sys.version,
"platform": platform.platform(),
"torch": torch.__version__,
"cuda_available": torch.cuda.is_available(),
"cuda_device": (torch.cuda.get_device_name(0) if torch.cuda.is_available() else None),
"cpu_count": psutil.cpu_count(logical=True),
"memory_gb": round(psutil.virtual_memory().total / (1024**3), 2),
},
}
manifest_path = base_out / "manifest.json"
with manifest_path.open("w", encoding="utf-8") as f:
json.dump(manifest, f, indent=2, sort_keys=True)
# 5) Debug info
debug_txt = base_out / "debug.txt"
with debug_txt.open("w", encoding="utf-8") as f:
f.write("==== DEBUG INFO ====\n")
f.write(f"Timestamp: {ts}\n")
f.write(f"Repo: {repo_id}\n")
f.write(f"Device: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')}\n")
f.write(f"Encoder params: {_param_count(encoder)}\n")
f.write(f"Constellation params: {_param_count(constellation)}\n")
f.write(f"Diagnostic head params: {_param_count(diagnostic_head)}\n")
f.write(f"Best test accuracy: {best_acc:.6f}\n")
# 6) Plots (confusion matrix already saved during training; accuracy_plot.png at CWD)
# Copy if present
acc_plot = Path("accuracy_plot.png")
if acc_plot.exists():
shutil.copy2(acc_plot, base_out / "accuracy_plot.png")
if last_confusion_png and Path(last_confusion_png).exists():
shutil.copy2(last_confusion_png, base_out / Path(last_confusion_png).name)
# 7) TensorBoard ("the tensorflow") logs
# We copy the event files into artifacts, and zip them for convenience
tb_out = base_out / "tensorboard"
tb_out.mkdir(parents=True, exist_ok=True)
if tb_log_dir and Path(tb_log_dir).exists():
for p in Path(tb_log_dir).glob("*"):
shutil.copy2(p, tb_out / p.name)
_zip_dir(tb_out, base_out / "tensorboard_events.zip")
# 8) Also save a small README
readme = base_out / "README.md"
readme.write_text(
f"""# Pentachora Adaptive Encoded — {ts}
This folder is an immutable snapshot of training artifacts.
**Contents**
- `weights/*.safetensors` — encoder, constellation, diagnostic head
- `config.json` — full run configuration
- `manifest.json` — environment + model sizes + dataset
- `history.json` / `history.csv` — per-epoch metrics
- `tensorboard/` + `tensorboard_events.zip` — raw TB event files ("the tensorflow")
- `accuracy_plot.png` (if available)
- `best_confusion_matrix_epoch_*.png` (if available)
- `debug.txt` — quick human-readable summary
""",
encoding="utf-8"
)
# ---------- push to HF Hub ----------
print(f"[push] Uploading to hf://{repo_id}/{repo_subdir_root}/{ts}")
api.upload_folder(
repo_id=repo_id,
folder_path=str(base_out),
path_in_repo=f"{repo_subdir_root}/{ts}",
repo_type="model",
)
print("[push] ✅ Upload complete.")
return base_out, f"{repo_subdir_root}/{ts}"
# ============================================================
# PENTAFREQ ENCODER (Original 93% Version)
# ============================================================
class PentaFreqEncoder(nn.Module):
"""
5-Frequency Band Encoder designed to perfectly align with pentachoron vertices.
Each frequency band corresponds to one vertex of the pentachoron.
The adjacency relationships between frequency bands naturally form
the edge structure of the pentachoron!
"""
def __init__(self, input_dim=784, base_dim=64):
super().__init__()
self.input_dim = input_dim
self.base_dim = base_dim
self.img_size = 28
self.unflatten = nn.Unflatten(1, (1, 28, 28))
# ========== 5 FREQUENCY EXTRACTORS ==========
# Vertex 0: Ultra-High Frequency (finest details, noise, texture grain)
self.v0_ultrahigh = nn.Sequential(
nn.Conv2d(1, 12, kernel_size=3, padding=1, stride=1),
nn.BatchNorm2d(12),
nn.ReLU(),
# Edge enhancement
nn.Conv2d(12, 12, kernel_size=3, padding=1, groups=12), # Depthwise
nn.BatchNorm2d(12),
nn.ReLU(),
nn.AdaptiveAvgPool2d(7),
nn.Flatten()
)
self.v0_encode = nn.Linear(12 * 49, base_dim)
# Vertex 1: High Frequency (edges, sharp transitions)
self.v1_high = nn.Sequential(
nn.Conv2d(1, 12, kernel_size=3, padding=1, stride=1),
nn.BatchNorm2d(12),
nn.Tanh(),
nn.MaxPool2d(2), # 14x14
nn.Conv2d(12, 12, kernel_size=3, padding=1),
nn.BatchNorm2d(12),
nn.Tanh(),
nn.AdaptiveAvgPool2d(7),
nn.Flatten()
)
self.v1_encode = nn.Linear(12 * 49, base_dim)
# Vertex 2: Mid Frequency (local patterns, textures)
self.v2_mid = nn.Sequential(
nn.Conv2d(1, 12, kernel_size=5, padding=2, stride=2), # 14x14
nn.BatchNorm2d(12),
nn.GELU(),
nn.Conv2d(12, 12, kernel_size=3, padding=1),
nn.BatchNorm2d(12),
nn.GELU(),
nn.AdaptiveAvgPool2d(7),
nn.Flatten()
)
self.v2_encode = nn.Linear(12 * 49, base_dim)
# Vertex 3: Low-Mid Frequency (shapes, regional features)
self.v3_lowmid = nn.Sequential(
nn.AvgPool2d(2), # Start with 14x14
nn.Conv2d(1, 12, kernel_size=7, padding=3),
nn.BatchNorm2d(12),
nn.SiLU(),
nn.AvgPool2d(2), # 7x7
nn.Flatten()
)
self.v3_encode = nn.Linear(12 * 49, base_dim)
# Vertex 4: Low Frequency (global structure, overall form)
self.v4_low = nn.Sequential(
nn.AvgPool2d(4), # Start with 7x7
nn.Conv2d(1, 12, kernel_size=7, padding=3),
nn.BatchNorm2d(12),
nn.Sigmoid(), # Smooth activation for global features
nn.AdaptiveAvgPool2d(7),
nn.Flatten()
)
self.v4_encode = nn.Linear(12 * 49, base_dim)
# ========== PENTACHORON ADJACENCY MATRIX ==========
# Defines which frequency bands are "adjacent" (connected by edges)
# This follows the edge structure of a perfect pentachoron
self.register_buffer('adjacency_matrix', self._create_pentachoron_adjacency())
# ========== FUSION NETWORK ==========
# Learns to combine all 5 frequency bands
self.fusion = nn.Sequential(
nn.Linear(base_dim * 5, base_dim * 3),
nn.BatchNorm1d(base_dim * 3),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(base_dim * 3, base_dim * 2),
nn.BatchNorm1d(base_dim * 2),
nn.ReLU(),
nn.Linear(base_dim * 2, base_dim)
)
# Initialize edge detection kernels for ultra-high frequency
self._init_edge_kernels()
def _create_pentachoron_adjacency(self):
"""
Create adjacency matrix for a complete graph (pentachoron).
In a 4-simplex, every vertex connects to every other vertex.
"""
adj = torch.ones(5, 5) - torch.eye(5)
return adj
def _init_edge_kernels(self):
"""Initialize V0 with various edge detection kernels."""
with torch.no_grad():
if hasattr(self.v0_ultrahigh[0], 'weight'):
kernels = self.v0_ultrahigh[0].weight
# Sobel X
kernels[0, 0] = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) / 4.0
# Sobel Y
kernels[1, 0] = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) / 4.0
# Laplacian
kernels[2, 0] = torch.tensor([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]) / 4.0
# Roberts Cross
kernels[3, 0] = torch.tensor([[1, 0, 0], [0, -1, 0], [0, 0, 0]]) / 2.0
# Prewitt X
kernels[4, 0] = torch.tensor([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]) / 3.0
def forward(self, x):
batch_size = x.size(0)
# Reshape to image
x_img = self.unflatten(x)
# ========== EXTRACT 5 FREQUENCY BANDS ==========
# Each vertex processes a different frequency range
# V0: Ultra-high frequency
v0_features = self.v0_ultrahigh(x_img)
v0 = self.v0_encode(v0_features)
# V1: High frequency
v1_features = self.v1_high(x_img)
v1 = self.v1_encode(v1_features)
# V2: Mid frequency
v2_features = self.v2_mid(x_img)
v2 = self.v2_encode(v2_features)
# V3: Low-mid frequency
v3_features = self.v3_lowmid(x_img)
v3 = self.v3_encode(v3_features)
# V4: Low frequency
v4_features = self.v4_low(x_img)
v4 = self.v4_encode(v4_features)
# Stack all vertex features
vertices = torch.stack([v0, v1, v2, v3, v4], dim=1) # [B, 5, base_dim]
# ========== COMPUTE PENTACHORON EDGE WEIGHTS ==========
# Normalize each vertex
vertices_norm = F.normalize(vertices, dim=2)
# Compute pairwise similarities (edge strengths) - BATCHED
# Use bmm for efficiency instead of loops
similarities = torch.bmm(vertices_norm, vertices_norm.transpose(1, 2)) # [B, 5, 5]
# Apply pentachoron adjacency mask
edge_strengths = similarities * self.adjacency_matrix.unsqueeze(0)
# ========== WEIGHTED COMBINATION BASED ON EDGE STRUCTURE ==========
# Each vertex is weighted by its edge connections
edge_weights = edge_strengths.sum(dim=2) # [B, 5]
edge_weights = F.softmax(edge_weights, dim=1)
# Weight each frequency band - BATCHED
weighted_vertices = vertices * edge_weights.unsqueeze(2) # [B, 5, base_dim]
# ========== FUSION ==========
# Flatten all weighted frequency bands
combined = weighted_vertices.flatten(1) # [B, base_dim * 5]
# Fuse through network
fused = self.fusion(combined)
# Final normalization to unit sphere
output = F.normalize(fused, dim=1)
return output
def get_frequency_contributions(self, x):
"""
Utility function to visualize how much each frequency band contributes.
Returns the weights for each vertex/frequency band.
"""
with torch.no_grad():
# Run forward pass to get edge weights
x_img = self.unflatten(x)
# Extract all frequencies
v0 = self.v0_encode(self.v0_ultrahigh(x_img))
v1 = self.v1_encode(self.v1_high(x_img))
v2 = self.v2_encode(self.v2_mid(x_img))
v3 = self.v3_encode(self.v3_lowmid(x_img))
v4 = self.v4_encode(self.v4_low(x_img))
vertices = torch.stack([v0, v1, v2, v3, v4], dim=1)
vertices_norm = F.normalize(vertices, dim=2)
# Compute edge strengths - BATCHED
similarities = torch.bmm(vertices_norm, vertices_norm.transpose(1, 2))
edge_strengths = similarities * self.adjacency_matrix.unsqueeze(0)
edge_weights = edge_strengths.sum(dim=2)
edge_weights = F.softmax(edge_weights, dim=1)
return edge_weights
# ============================================================
# BATCHED PENTACHORON CONSTELLATION
# ============================================================
class BatchedPentachoronConstellation(nn.Module):
"""Optimized constellation with a permanent, integrated Coherence Head."""
def __init__(self, num_classes, dim, num_pairs=5, device='cuda', lambda_sep=0.5):
super().__init__()
self.num_classes = num_classes
self.dim = dim
self.num_pairs = num_pairs
self.device = device
self.lambda_separation = lambda_sep
# Initialize all pentachora as single tensors for batched ops
self.dispatchers = nn.Parameter(self._init_batched_pentachora())
self.specialists = nn.Parameter(self._init_batched_pentachora())
# Batched weights
self.dispatcher_weights = nn.Parameter(torch.randn(num_pairs, 5) * 0.1)
self.specialist_weights = nn.Parameter(torch.randn(num_pairs, 5) * 0.1)
# Temperature per pair
self.temps = nn.Parameter(0.3 * torch.ones(num_pairs))
# Vertex assignments
self.register_buffer('vertex_map', self._create_vertex_mapping())
# Group classification heads for each vertex
self.group_heads = nn.ModuleList([
nn.Linear(dim, (self.vertex_map == i).sum().item()) if (self.vertex_map == i).sum().item() > 0 else None
for i in range(5)
])
# Cross-pair attention mechanism
self.cross_attention = nn.MultiheadAttention(
embed_dim=dim,
num_heads=config.get('num_heads', 4),
dropout=0.1,
batch_first=True
)
# Aggregation weights for combining scores from different pairs
self.aggregation_weights = nn.Parameter(torch.ones(num_pairs) / num_pairs)
# Final fusion network
self.fusion = nn.Sequential(
nn.Linear(num_classes * num_pairs, num_classes * 2),
nn.BatchNorm1d(num_classes * 2),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(num_classes * 2, num_classes)
)
### ADDED: Integrated Coherence Head ###
# This small MLP acts as the permanent "rose_head". It learns to assess
# the quality/coherence of the input latent vector `x`.
self.coherence_head = nn.Sequential(
nn.Linear(dim, dim // 2),
nn.GELU(),
nn.Linear(dim // 2, 1)
)
def _init_batched_pentachora(self):
"""Initializes all pentachora for the constellation."""
sqrt15, sqrt10, sqrt5 = np.sqrt(15), np.sqrt(10), np.sqrt(5)
base_simplex = torch.tensor([
[ 1.0, 0.0, 0.0, 0.0],
[-0.25, sqrt15/4, 0.0, 0.0],
[-0.25, -sqrt15/12, sqrt10/3, 0.0],
[-0.25, -sqrt15/12, -sqrt10/6, sqrt5/2],
[-0.25, -sqrt15/12, -sqrt10/6, -sqrt5/2]
], device=self.device)
base_simplex = F.normalize(base_simplex, dim=1)
pentachora = torch.zeros(self.num_pairs, 5, self.dim, device=self.device)
for i in range(self.num_pairs):
pentachora[i, :, :4] = base_simplex * (1 + 0.1 * i)
if self.dim > 4:
pentachora[i, :, 4:] = torch.randn(5, self.dim - 4, device=self.device) * (random.random() * 0.25)
return pentachora * 2.0
def _create_vertex_mapping(self):
"""Creates a mapping from classes to the 5 pentachoron vertices."""
mapping = torch.zeros(self.num_classes, dtype=torch.long)
for i in range(self.num_classes):
mapping[i] = i % 5
return mapping
def forward(self, x):
batch_size = x.size(0)
### MODIFIED: Coherence Gating ###
# 1. Calculate the coherence score for the latent vector `x`.
coherence_gate = torch.sigmoid(self.coherence_head(x)) # Shape: [batch_size, 1]
# Distance calculations
x_expanded = x.unsqueeze(1).unsqueeze(2)
disp_expanded = self.dispatchers.unsqueeze(0)
spec_expanded = self.specialists.unsqueeze(0)
disp_dists = torch.norm(x_expanded - disp_expanded, dim=3)
spec_dists = torch.norm(x_expanded - spec_expanded, dim=3)
disp_weights = F.softmax(self.dispatcher_weights, dim=1).unsqueeze(0)
spec_weights = F.softmax(self.specialist_weights, dim=1).unsqueeze(0)
weighted_disp = disp_dists * disp_weights
weighted_spec = spec_dists * spec_weights
temps_clamped = torch.clamp(self.temps, 0.1, 2.0).view(1, -1, 1)
### MODIFIED: Apply Coherence to Vertex Logits ###
# 2. Calculate pre-softmax "logits" and modulate with the coherence score.
disp_logits = -weighted_disp / temps_clamped
spec_logits = -weighted_spec / temps_clamped
modulated_disp_logits = disp_logits * coherence_gate.unsqueeze(-1)
modulated_spec_logits = spec_logits * coherence_gate.unsqueeze(-1)
# 3. Calculate probabilities from the *modulated* logits.
vertex_probs = F.softmax(modulated_disp_logits, dim=2)
spec_probs = F.softmax(modulated_spec_logits, dim=2)
combined_probs = 0.5 * vertex_probs + 0.5 * spec_probs
# Score calculation using group heads
all_scores = []
for p in range(self.num_pairs):
pair_scores = torch.zeros(batch_size, self.num_classes, device=self.device)
for v_idx in range(5):
classes_in_vertex = (self.vertex_map == v_idx).nonzero(as_tuple=True)[0]
if len(classes_in_vertex) == 0: continue
v_prob = combined_probs[:, p, v_idx:v_idx+1]
if self.group_heads[v_idx] is not None:
group_logits = self.group_heads[v_idx](x)
gated_logits = group_logits * v_prob
for i, cls in enumerate(classes_in_vertex):
if i < gated_logits.size(1):
pair_scores[:, cls] = gated_logits[:, i]
all_scores.append(pair_scores)
all_scores_tensor = torch.stack(all_scores, dim=1)
# Cross-attention and aggregation
avg_dispatcher_centers = self.dispatchers.mean(dim=1).unsqueeze(0).expand(batch_size, -1, -1)
attended_features, _ = self.cross_attention(
avg_dispatcher_centers, avg_dispatcher_centers, avg_dispatcher_centers
)
agg_weights = F.softmax(self.aggregation_weights, dim=0).view(1, -1, 1)
weighted_scores = (all_scores_tensor * agg_weights).sum(dim=1)
# Final fusion
concat_scores = all_scores_tensor.flatten(1)
fused_scores = self.fusion(concat_scores)
final_scores = 0.6 * weighted_scores + 0.4 * fused_scores
return final_scores, (disp_dists, spec_dists, vertex_probs)
def regularization_loss(self, vertex_weights=None):
"""BATCHED regularization with optional per-vertex weighting."""
# Original Geometric Regularization
disp_cm = self._batched_cayley_menger(self.dispatchers)
spec_cm = self._batched_cayley_menger(self.specialists)
cm_loss = torch.relu(1.0 - torch.abs(disp_cm)).sum() + torch.relu(1.0 - torch.abs(spec_cm)).sum()
edge_loss = self._batched_edge_variance(self.dispatchers) + self._batched_edge_variance(self.specialists)
disp_centers = self.dispatchers.mean(dim=1)
spec_centers = self.specialists.mean(dim=1)
cos_sims = F.cosine_similarity(disp_centers, spec_centers, dim=1)
ortho_loss = torch.abs(cos_sims).sum() * self.lambda_separation
separations = torch.norm(disp_centers - spec_centers, dim=1)
sep_loss = torch.relu(2.0 - separations).sum() * self.lambda_separation
# Dynamic Vertex Regularization
dynamic_reg_loss = 0.0
if vertex_weights is not None:
vertex_weights = vertex_weights.to(self.dispatchers.device)
disp_norms = torch.norm(self.dispatchers, p=2, dim=2)
spec_norms = torch.norm(self.specialists, p=2, dim=2)
weighted_disp_loss = (disp_norms * vertex_weights.unsqueeze(0)).mean()
weighted_spec_loss = (spec_norms * vertex_weights.unsqueeze(0)).mean()
dynamic_reg_loss = 0.1 * (weighted_disp_loss + weighted_spec_loss)
total_loss = (cm_loss + edge_loss + ortho_loss + sep_loss) / self.num_pairs
return total_loss + dynamic_reg_loss
def _batched_cayley_menger(self, pentachora):
"""Compute Cayley-Menger determinant for all pairs at once."""
num_pairs = pentachora.shape[0]
dists_sq = torch.cdist(pentachora, pentachora) ** 2
cm_matrices = torch.zeros(num_pairs, 6, 6, device=self.device)
cm_matrices[:, 0, 1:] = 1
cm_matrices[:, 1:, 0] = 1
cm_matrices[:, 1:, 1:] = dists_sq
return torch.det(cm_matrices)
def _batched_edge_variance(self, pentachora):
"""Compute edge variance for all pairs at once."""
dists = torch.cdist(pentachora, pentachora)
mask = torch.triu(torch.ones(5, 5, device=self.device), diagonal=1).bool()
edges_list = [dists[p][mask] for p in range(self.num_pairs)]
edges_all = torch.stack(edges_list)
variances = edges_all.var(dim=1)
mins = edges_all.min(dim=1)[0]
return variances.sum() + torch.relu(0.5 - mins).sum()
def _cayley_menger_determinant(self, vertices):
"""Compute Cayley-Menger determinant for pentachoron validity."""
n = vertices.shape[0]
# Distance matrix
dists_sq = torch.cdist(vertices.unsqueeze(0), vertices.unsqueeze(0))[0] ** 2
# Build Cayley-Menger matrix
cm_matrix = torch.zeros(n+1, n+1, device=self.device)
cm_matrix[0, 1:] = 1
cm_matrix[1:, 0] = 1
cm_matrix[1:, 1:] = dists_sq
return torch.det(cm_matrix)
# ============================================================
# COMPLETE LOSS FUNCTIONS
# ============================================================
def dual_contrastive_loss(latents, targets, constellation, config):
"""
Computes a dual contrastive loss for pulling samples to the correct pentachoron vertex
and pushing them away from all incorrect vertices.
Args:
latents (torch.Tensor): The encoded feature vectors from the encoder [B, dim].
targets (torch.Tensor): The ground truth class labels [B].
constellation (nn.Module): The PentachoronConstellation model.
config (dict): The configuration dictionary containing 'temp'.
Returns:
torch.Tensor: The total contrastive loss.
"""
batch_size = latents.size(0)
device = latents.device
temp = config['temp']
# Get the target vertex for each sample in the batch
target_vertices = constellation.vertex_map[targets] # [B]
# Normalize latents to be on the unit sphere for a clean cosine similarity
latents = F.normalize(latents, dim=1)
# --- DISPATCHER LOSS ---
# Shape: [num_pairs, 5, dim]
disp_pentachora_norm = F.normalize(constellation.dispatchers, dim=2)
# The fix: Repeat the dispatcher tensor for each item in the batch
disp_pentachora_expanded = disp_pentachora_norm.unsqueeze(0).expand(batch_size, -1, -1, -1) # [B, num_pairs, 5, dim]
# Compute cosine similarity between each latent and all dispatcher vertices
# latents: [B, 1, dim], disp_pentachora_expanded: [B, num_pairs, 5, dim]
# Resulting shape: [B, num_pairs, 5]
disp_sims = torch.einsum('bd,bpvd->bpv', latents, F.normalize(disp_pentachora_expanded, dim=3))
# Gather the similarities for the correct vertices for each sample
# disp_sims[i, p, target_vertices[i]]
disp_positive_sims = disp_sims[torch.arange(batch_size), :, target_vertices] # [B, num_pairs]
# Calculate negative logits by taking similarities of all vertices
disp_all_logits = disp_sims / temp # [B, num_pairs, 5]
# Calculate InfoNCE loss for dispatchers
disp_loss = -torch.log(torch.exp(disp_positive_sims / temp) / torch.exp(disp_all_logits).sum(dim=2)).mean()
# --- SPECIALIST LOSS ---
# Same process for the specialists
spec_pentachora_norm = F.normalize(constellation.specialists, dim=2)
spec_pentachora_expanded = spec_pentachora_norm.unsqueeze(0).expand(batch_size, -1, -1, -1)
spec_sims = torch.einsum('bd,bpvd->bpv', latents, F.normalize(spec_pentachora_expanded, dim=3))
spec_positive_sims = spec_sims[torch.arange(batch_size), :, target_vertices]
spec_all_logits = spec_sims / temp
spec_loss = -torch.log(torch.exp(spec_positive_sims / temp) / torch.exp(spec_all_logits).sum(dim=2)).mean()
# Combine losses
total_loss = disp_loss + spec_loss
return total_loss
# Helper functions meant to solidify the new scheduler
def get_class_similarity(constellation_model, num_classes):
"""
Calculates pairwise class similarity based on the final layer's weights.
Returns a [num_classes, num_classes] similarity matrix.
"""
# Use the final fusion layer as the class representation
final_layer = constellation_model.fusion[-1]
weights = final_layer.weight.data.detach() # Shape: [num_classes, feature_dim]
# Normalize each class vector to get cosine similarity
norm_weights = F.normalize(weights, p=2, dim=1)
# Cosine similarity is the dot product of normalized vectors
similarity_matrix = torch.matmul(norm_weights, norm_weights.T)
return torch.clamp(similarity_matrix, 0.0, 1.0) # Ensure values are [0, 1]
def get_vertex_weights_from_confusion(conf_matrix, class_similarity, vertex_map, device):
"""
Calculates per-vertex regularization weights based on class confusion
and similarity.
"""
num_classes = conf_matrix.shape[0]
# 1. Calculate a "confusion score" for each class (1 - accuracy)
class_totals = conf_matrix.sum(axis=1)
class_correct = conf_matrix.diagonal()
class_acc = np.divide(class_correct, class_totals, out=np.zeros_like(class_correct, dtype=float), where=class_totals!=0)
confusion_scores = 1.0 - torch.tensor(class_acc, device=device, dtype=torch.float32)
# 2. Spread the confusion using the similarity matrix (the "bell curve")
sigma = 0.5 # Controls the width of the bell curve
gaussian_similarity = torch.exp(-((1 - class_similarity)**2) / (2 * sigma**2))
propagated_scores = torch.matmul(gaussian_similarity, confusion_scores)
# 3. Map per-class scores to per-vertex scores
vertex_problem_scores_sum = torch.zeros(5, device=device)
vertex_counts = torch.zeros(5, device=device)
for class_idx, vertex_idx in enumerate(vertex_map):
vertex_problem_scores_sum[vertex_idx] += propagated_scores[class_idx]
vertex_counts[vertex_idx] += 1
# --- CORRECTED LINE ---
# Perform safe division to average the scores for vertices with multiple classes
vertex_problem_scores = torch.zeros_like(vertex_problem_scores_sum)
mask = vertex_counts > 0
vertex_problem_scores[mask] = vertex_problem_scores_sum[mask] / vertex_counts[mask]
# 4. Convert "problem score" to "regularization weight"
vertex_weights = 1.0 - torch.tanh(vertex_problem_scores) # Maps scores to a (0, 1) range
return F.normalize(vertex_weights, p=1, dim=0) * 5.0 # Normalize sum to 5, so avg is 1
# ============================================================
# TRAINING FUNCTIONS
# ============================================================
# In the TRAINING FUNCTIONS section
# ============================================================
# TRAINING FUNCTION
# ============================================================
def train_epoch(encoder, constellation, optimizer, train_loader, epoch, config, vertex_weights, device):
"""
Performs one full training epoch using the provided dynamic regularization weights.
"""
# Set models to training mode
encoder.train()
constellation.train()
# Initialize trackers for loss and accuracy
total_loss = 0.0
correct_predictions = 0
total_samples = 0
# Create a progress bar for the training loader
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config['epochs']} [Training]")
for inputs, targets in pbar:
# Move data to the configured device (GPU or CPU)
inputs, targets = inputs.to(device), as_class_indices(targets.to(device))
# Reset gradients from the previous iteration
optimizer.zero_grad()
# --- Forward Pass ---
# 1. Get latent representations from the encoder
z = encoder(inputs)
# 2. Get classification scores from the constellation
scores, _ = constellation(z)
# --- Loss Calculation ---
# 1. Standard cross-entropy loss for classification
ce_loss = F.cross_entropy(scores, targets)
# 2. Regularization loss, now modulated by our dynamic per-vertex weights
reg_loss = constellation.regularization_loss(vertex_weights=vertex_weights)
# 3. Combine the losses
loss = ce_loss + config['loss_weight_scalar'] * reg_loss
# --- Backward Pass and Optimization ---
# 1. Compute gradients
loss.backward()
# 2. Clip gradients to prevent exploding gradients
torch.nn.utils.clip_grad_norm_(encoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(constellation.parameters(), 1.0)
# 3. Update model weights
optimizer.step()
# --- Update Statistics ---
total_loss += loss.item() * inputs.size(0)
preds = scores.argmax(dim=1)
correct_predictions += (preds == targets).sum().item()
total_samples += inputs.size(0)
# Update the progress bar with live metrics
pbar.set_postfix({
'loss': f"{loss.item():.4f}",
'acc': f"{correct_predictions/total_samples:.4f}",
'reg': f"{reg_loss.item():.4f}"
})
# Return the average loss and accuracy for the epoch
return total_loss / total_samples, correct_predictions / total_samples
from sklearn.metrics import confusion_matrix
import seaborn as sns
@torch.no_grad()
def evaluate(encoder, constellation, test_loader, num_classes): # Added num_classes
encoder.eval()
constellation.eval()
all_preds = []
all_targets = []
for inputs, targets in tqdm(test_loader, desc="Evaluating"):
inputs, targets = inputs.to(device), as_class_indices(targets.to(device))
z = encoder(inputs)
scores, _ = constellation(z)
preds = scores.argmax(dim=1)
all_preds.extend(preds.cpu().numpy())
all_targets.extend(targets.cpu().numpy())
correct = (np.array(all_preds) == np.array(all_targets)).sum()
total = len(all_targets)
# Calculate confusion matrix
conf_matrix = confusion_matrix(all_targets, all_preds, labels=np.arange(num_classes))
# Calculate per-class accuracies from the confusion matrix
class_correct = conf_matrix.diagonal()
class_total = conf_matrix.sum(axis=1)
# Avoid division by zero for classes not present in the test set
class_accs = np.divide(class_correct, class_total, out=np.zeros_like(class_correct, dtype=float), where=class_total!=0)
return correct/total, list(class_accs), conf_matrix
# ============================================================
# DYNAMIC SCHEDULER
# ============================================================
class DynamicScheduler:
"""
A custom learning rate scheduler with warmup and reduce-on-plateau logic.
- Warmup Phase: Linearly increases LR from a small value to the initial LR.
- Main Phase: Monitors a metric (e.g., test accuracy) and reduces the LR
when the metric stops improving for a 'patience' number of epochs.
"""
def __init__(self, optimizer, initial_lr, warmup_epochs, patience, factor=0.5, min_lr=1e-6, cooldown_epochs=2):
self.optimizer = optimizer
self.initial_lr = initial_lr
self.warmup_epochs = warmup_epochs
self.patience = patience
self.factor = factor
self.min_lr = min_lr
self.cooldown_epochs = cooldown_epochs
# State tracking
self.current_epoch = 0
self.phase = 'warmup' if warmup_epochs > 0 else 'main'
self.best_metric = -1.0
self.epochs_since_improvement = 0
self.cooldown_counter = 0
print("\n" + "="*60)
print("INITIALIZING DYNAMIC SCHEDULER")
print("="*60)
print(f"{'Initial LR':<25}: {self.initial_lr}")
print(f"{'Warmup Epochs':<25}: {self.warmup_epochs}")
print(f"{'Patience (for plateau)':<25}: {self.patience}")
print(f"{'Reduction Factor':<25}: {self.factor}")
print(f"{'Cooldown Epochs':<25}: {self.cooldown_epochs}")
print(f"{'Minimum LR':<25}: {self.min_lr}")
def _set_lr(self, lr_value):
"""Sets the learning rate for all parameter groups in the optimizer."""
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr_value
def step(self, metric):
"""
Update the learning rate based on the provided metric (e.g., test accuracy).
This should be called once per epoch AFTER evaluation.
"""
self.current_epoch += 1
current_lr = self.optimizer.param_groups[0]['lr']
if self.phase == 'warmup':
# Calculate the learning rate for the current warmup step
lr = self.initial_lr * (self.current_epoch / self.warmup_epochs)
self._set_lr(lr)
print(f" Scheduler (Warmup): Epoch {self.current_epoch}/{self.warmup_epochs}, LR set to {lr:.6f}")
# Check if warmup phase is complete
if self.current_epoch >= self.warmup_epochs:
self.phase = 'main'
self.best_metric = metric # Initialize best metric after warmup
print(" Scheduler: Warmup complete. Switched to main (plateau) phase.")
elif self.phase == 'main':
# Handle cooldown period
if self.cooldown_counter > 0:
self.cooldown_counter -= 1
print(f" Scheduler (Cooldown): {self.cooldown_counter+1} epochs remaining.")
return
# Check for improvement
if metric > self.best_metric:
self.best_metric = metric
self.epochs_since_improvement = 0
else:
self.epochs_since_improvement += 1
print(f" Scheduler: No improvement for {self.epochs_since_improvement} epoch(s). Best Acc: {self.best_metric:.4f}")
# If patience is exceeded, reduce learning rate
if self.epochs_since_improvement >= self.patience:
new_lr = max(current_lr * self.factor, self.min_lr)
if new_lr < current_lr:
self._set_lr(new_lr)
print(f" 🔥 Scheduler: Metric plateaued. Reducing LR to {new_lr:.6f}")
self.epochs_since_improvement = 0
self.cooldown_counter = self.cooldown_epochs # Start cooldown
else:
print(" Scheduler: Already at minimum LR. No change.")
# ============================================================
# MAIN TRAINING LOOP
# ============================================================
class RoseDiagnosticHead(nn.Module):
"""
A simple MLP to predict the rose_score_magnitude from a latent vector.
This is a "throwaway" module used for diagnostics, not for the final model's task.
"""
def __init__(self, latent_dim, hidden_dim=128):
super().__init__()
self.net = nn.Sequential(
nn.Linear(latent_dim, hidden_dim),
nn.GELU(),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, 1) # Output a single scalar value
)
def forward(self, x):
return self.net(x)
def rose_score_magnitude(x: torch.Tensor, need: torch.Tensor, relation: torch.Tensor, purpose: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
"""
Computes a magnitude-only Rose similarity score between `x` and `need`,
modulated by triadic reference vectors `relation` and `purpose`.
"""
x_n = F.normalize(x, dim=-1, eps=eps)
n_n = F.normalize(need, dim=-1, eps=eps)
r_n = F.normalize(relation, dim=-1, eps=eps)
p_n = F.normalize(purpose, dim=-1, eps=eps)
# Core directional cosine components
a_n = torch.einsum('bd,bd->b', x_n, n_n) # Batch dot product
a_r = torch.einsum('bd,bd->b', x_n, r_n)
a_p = torch.einsum('bd,bd->b', x_n, p_n)
# Triadic magnitude score
r7 = (a_n + a_r + a_p) / 3.0
r8 = x.norm(dim=-1)
return r7 * r8
def RoseCrossContrastiveLoss(latents, targets, constellation, temp=0.5):
"""
Computes a contrastive loss where each sample's contribution is weighted
by the inverse of its `rose_score_magnitude`.
Returns the final loss and the calculated rose scores for diagnostics.
"""
batch_size = latents.size(0)
device = latents.device
# --- 1. Define the Symbolic Basis for ROSE Score ---
target_vertex_indices = constellation.vertex_map[targets]
# Need: Target vertices from the specialist pentachora (the ideal goal)
# [B, D]
need_vectors = constellation.specialists[:, target_vertex_indices, :].mean(dim=0)
# Relation: Target vertices from the dispatcher pentachora (the context)
# [B, D]
relation_vectors = constellation.dispatchers[:, target_vertex_indices, :].mean(dim=0)
# Purpose: The centroid of the specialist pentachora (the overall structure)
# [D] -> [B, D]
purpose_vectors = constellation.specialists.mean(dim=(0, 1)).unsqueeze(0).expand(batch_size, -1)
# --- 2. Calculate the ROSE Score for each sample in the batch ---
# rose_scores will have shape [B]
rose_scores = rose_score_magnitude(latents, need_vectors, relation_vectors, purpose_vectors)
# --- 3. Calculate Per-Sample Inverse Weights ---
# We use (1 - tanh(x)) to create a stable, bounded weight between (0, 2).
# High rose_score -> low loss weight. Low rose_score -> high loss weight.
loss_weights = 1.0 - torch.tanh(rose_scores)
# --- 4. Calculate Base Contrastive Loss (InfoNCE) ---
all_vertices_specialist = constellation.specialists.mean(dim=0) # [5, D]
all_vertices_dispatcher = constellation.dispatchers.mean(dim=0) # [5, D]
# Similarities to all specialist and dispatcher vertices
sim_specialist = F.normalize(latents) @ F.normalize(all_vertices_specialist).T # [B, 5]
sim_dispatcher = F.normalize(latents) @ F.normalize(all_vertices_dispatcher).T # [B, 5]
# Get the similarity to the positive (correct) vertex for each sample
pos_sim_specialist = sim_specialist[torch.arange(batch_size), target_vertex_indices]
pos_sim_dispatcher = sim_dispatcher[torch.arange(batch_size), target_vertex_indices]
# Calculate the per-sample InfoNCE loss for both pentachora
logits_specialist = -torch.log(torch.exp(pos_sim_specialist / temp) / torch.exp(sim_specialist / temp).sum(dim=1))
logits_dispatcher = -torch.log(torch.exp(pos_sim_dispatcher / temp) / torch.exp(sim_dispatcher / temp).sum(dim=1))
per_sample_loss = (logits_specialist + logits_dispatcher) / 2.0
# --- 5. Apply the ROSE Weights and return the mean loss ---
final_loss = (per_sample_loss * loss_weights).mean()
return final_loss, rose_scores.detach() # Detach scores for diagnostic use
# ============================================================
# MAIN FUNCTION
# ============================================================
def main():
print("\n" + "="*60)
print("PENTACHORON CONSTELLATION FINAL CONFIGURATION")
print("="*60)
for key, value in config.items():
print(f"{key:25}: {value}")
# Models
encoder = PentaFreqEncoder(config['input_dim'], config['base_dim']).to(device)
constellation = BatchedPentachoronConstellation(
config['num_classes'],
config['base_dim'],
config['num_pentachoron_pairs'],
device,
config['lambda_separation']
).to(device)
diagnostic_head = RoseDiagnosticHead(config['base_dim']).to(device)
# Optimizer & scheduler
optimizer = torch.optim.AdamW(
list(encoder.parameters()) + list(constellation.parameters()) + list(diagnostic_head.parameters()),
lr=config['lr'],
weight_decay=config["weight_decay"]
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config['epochs'])
# TensorBoard ("the tensorflow")
tb_dir = Path("tb_logs") / _timestamp()
tb_dir.mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(log_dir=str(tb_dir))
history = {'train_loss': [], 'train_acc': [], 'test_acc': []}
best_acc = 0.0
last_conf_png = None
start_time = time.time()
print("\n" + "="*60)
print("STARTING TRAINING WITH ROSE-MODULATED LOSS")
print("="*60 + "\n")
for epoch in range(config['epochs']):
encoder.train(); constellation.train(); diagnostic_head.train()
total_loss = total_correct = total_samples = 0
pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config['epochs']}")
for inputs, targets in pbar:
inputs, targets = inputs.to(device), as_class_indices(targets.to(device))
optimizer.zero_grad()
latents = encoder(inputs)
scores, _ = constellation(latents)
loss_ce = F.cross_entropy(scores, targets)
loss_contrastive, true_rose_scores = RoseCrossContrastiveLoss(
latents, targets, constellation, temp=config['temp']
)
pred_rose = diagnostic_head(latents.detach())
loss_diag = F.mse_loss(pred_rose.squeeze(), true_rose_scores)
loss_reg = constellation.regularization_loss()
loss = loss_ce + (1.0 * loss_contrastive) + (0.1 * loss_diag) + (config['loss_weight_scalar'] * loss_reg)
loss.backward()
torch.nn.utils.clip_grad_norm_(encoder.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(constellation.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(diagnostic_head.parameters(), 1.0)
optimizer.step()
total_loss += loss.item() * inputs.size(0)
preds = scores.argmax(dim=1)
total_correct += (preds == targets).sum().item()
total_samples += inputs.size(0)
pbar.set_postfix({
'loss': f"{loss.item():.4f}",
'acc': f"{total_correct/total_samples:.4f}",
'rose_loss': f"{loss_contrastive.item():.4f}",
'diag_loss': f"{loss_diag.item():.4f}"
})
train_loss = total_loss / total_samples
train_acc = total_correct / total_samples
# Evaluation
test_acc, class_accs, conf_matrix = evaluate(
encoder, constellation, test_loader, config['num_classes']
)
# Log to TensorBoard
writer.add_scalar("Loss/train", train_loss, epoch+1)
writer.add_scalar("Acc/train", train_acc, epoch+1)
writer.add_scalar("Acc/test", test_acc, epoch+1)
writer.add_scalar("LR", optimizer.param_groups[0]['lr'], epoch+1)
# Scheduler
scheduler.step()
# History
history['train_loss'].append(train_loss)
history['train_acc'].append(train_acc)
history['test_acc'].append(test_acc)
print(f"\n[Epoch {epoch+1}/{config['epochs']}]")
print(f" Train Loss: {train_loss:.4f} | Train Acc: {train_acc:.4f} | Test Acc: {test_acc:.4f}")
if test_acc > best_acc:
best_acc = test_acc
print(f" 🎯 NEW BEST ACCURACY: {best_acc:.4f}")
print(" Saving new best confusion matrix heatmap...")
import seaborn as sns
plt.figure(figsize=(12, 10))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
plt.title(f'Confusion Matrix - Epoch {epoch+1} - Accuracy: {best_acc:.4f}', fontsize=16)
plt.xlabel('Predicted Label', fontsize=12)
plt.ylabel('True Label', fontsize=12)
plt.tight_layout()
last_conf_png = f'best_confusion_matrix_epoch_{epoch+1}.png'
plt.savefig(last_conf_png, dpi=150)
plt.close()
# Final plots
elapsed_time = time.time() - start_time
print("\n" + "="*60)
print("TRAINING COMPLETE")
print("="*60)
print(f" Best Test Accuracy: {best_acc*100:.2f}%")
print(f" Total Training Time: {elapsed_time/60:.2f} minutes")
plt.figure(figsize=(12, 5))
plt.plot(history['train_acc'], label='Train Accuracy')
plt.plot(history['test_acc'], label='Test Accuracy', linewidth=2)
plt.title('Model Accuracy Over Epochs', fontsize=16)
plt.xlabel('Epoch', fontsize=12)
plt.ylabel('Accuracy', fontsize=12)
plt.legend()
plt.grid(True, linestyle='--', alpha=0.6)
plt.tight_layout()
plt.savefig('accuracy_plot.png', dpi=150)
plt.show()
# Save and push bundle
local_dir, hub_path = save_and_push_artifacts(
encoder=encoder,
constellation=constellation,
diagnostic_head=diagnostic_head,
config=config,
class_names=class_names,
history=history,
best_acc=best_acc,
tb_log_dir=tb_dir,
last_confusion_png=last_conf_png,
repo_subdir_root="pentachora-adaptive-encoded/" + DATASET_NAME,
)
print(f"[done] Local artifacts at: {local_dir}")
print(f"[done] HuggingFace path: {hub_path}")
return encoder, constellation, history
# ============================
# OPTIONAL: set your repo here
# ============================
# Example:
config['hf_repo_id'] = "AbstractPhil/pentachora-frequency-encoded"
if __name__ == "__main__":
encoder, constellation, history = main()
print("\n✨ Optimized Pentachoron Constellation Training Complete!") |