{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d5c28f91e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709072985358589950, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOZr4z3kWbU+Z0U2vnZGpr4oPrS81hq/OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBzTfvWpZSMAWyUTaABjAF0lEdAo7oPUx20RnV9lChoBkdAZ1N4rz5GjWgHTegDaAhHQKO9j0p3HJd1fZQoaAZHQHEML1uivgZoB02vAWgIR0CjvtAU+LWJdX2UKGgGR0ByVa8VYZEVaAdNOAFoCEdAo7+2Y0EX+HV9lChoBkdAR3ix1PnB+GgHS/ZoCEdAo8D+bExZdXV9lChoBkdAcCSQNkOI7GgHTSIBaAhHQKPB3EYwZfl1fZQoaAZHQHGXnXNC7btoB01TAWgIR0CjwtkWZZ0TdX2UKGgGR0BxkA5o4+8oaAdNQAFoCEdAo8ReW0JF9nV9lChoBkdAb+axKxs2vWgHTXwBaAhHQKPFeY8+zMR1fZQoaAZHQEiAr3Cbc45oB0vWaAhHQKPGFa6jFhp1fZQoaAZHQHDkQd0aIepoB00vAWgIR0Cjx97fxc3VdX2UKGgGR0Bu35ON5t3waAdNAwJoCEdAo8nM078vVXV9lChoBkdAcSeA4XGfgGgHTTcBaAhHQKPK1ArQPZt1fZQoaAZHQEII/qxC6YpoB0vsaAhHQKPMEkcCHRF1fZQoaAZHQHGkc5S3soloB002AWgIR0CjzPnH/95ydX2UKGgGR0BxCyAUcn3MaAdNoQFoCEdAo84rqKP4mHV9lChoBkdAcKmwRoRIz2gHTVoBaAhHQKPPtNiYsup1fZQoaAZHQGdWOC5EtuloB03oA2gIR0Cj0x22w3YMdX2UKGgGR0BvzTsrupjuaAdNOwFoCEdAo9QECPp6hXV9lChoBkdAcEfgjyFwk2gHTaEBaAhHQKPVNLoOhCd1fZQoaAZHQHEqkwrUb1hoB01BAWgIR0Cj1roWHk92dX2UKGgGR0BCKf+85CF9aAdL4WgIR0Cj11pe/pMYdX2UKGgGR0BlQllwtJ4CaAdN6ANoCEdAo9rMCDEm6XV9lChoBkdAbyU/8EV32WgHTdMBaAhHQKPcIAKfFrF1fZQoaAZHQHCEAoPTXrdoB00lAWgIR0Cj3YxUNrj6dX2UKGgGR0BtINCAtnPFaAdNSwFoCEdAo96M1IiC8XV9lChoBkdAcD009QoCuGgHTSECaAhHQKPgiThYNiJ1fZQoaAZHQHDupIYm9g5oB00DAWgIR0Cj4lBR64UfdX2UKGgGR0BupNnyup0faAdNJQFoCEdAo+MmpOvdM3V9lChoBkdAcTOPyCnP3WgHTUUBaAhHQKPkDvNNahZ1fZQoaAZHQHHBJaRp1zRoB00rAWgIR0Cj5XWRA8jidX2UKGgGR0BzVqK/EfknaAdNagFoCEdAo+Z4aef7JnV9lChoBkdAKIGza9K28mgHS+RoCEdAo+ccFOfukXV9lChoBkdAb501hLGrCGgHTZwBaAhHQKPo19roGIN1fZQoaAZHQG6TlvZRKpVoB00cAWgIR0Cj6a6/IsAedX2UKGgGR0Bvka8pTdcjaAdNJwFoCEdAo+p9RP420nV9lChoBkdAcde5C4SYgWgHTR0BaAhHQKPrSqp97Wx1fZQoaAZHQHGAwJb+tKZoB00eAWgIR0Cj7Ki8FpwkdX2UKGgGR0Bx/Bfx+a0AaAdNDwFoCEdAo+1y3ocJdHV9lChoBkdAb2CuA7Ppp2gHTSgBaAhHQKPuRIMBp6B1fZQoaAZHQHFyvdEb5uZoB01AAWgIR0Cj78dmxt52dX2UKGgGR0BwsptNzr/saAdNLAFoCEdAo/CWymhufnV9lChoBkdAcn9O9nK4hGgHTTwBaAhHQKPxfWjoIOZ1fZQoaAZHQG5xw2dd3StoB00OA2gIR0Cj9Ehj4HopdX2UKGgGR0BtyH7aZhKEaAdNCwFoCEdAo/UF3pwCKnV9lChoBkdATh87hegL7WgHS9doCEdAo/WmDWbw0HV9lChoBkdAcVdsguAZsWgHTaQBaAhHQKP30VgQYk51fZQoaAZHQHAkbqY7aIxoB00zAWgIR0Cj+N+yiVSodX2UKGgGR0BxcoFhXr+paAdNNwFoCEdAo/obTKDCg3V9lChoBkdAY0sKzAvcrWgHTegDaAhHQKP9fDEWIoF1fZQoaAZHQGNhyE+PikxoB03oA2gIR0CkAO8FQl8gdX2UKGgGR0Bwoz+Q2dd3aAdNFQFoCEdApAJGhqTKT3V9lChoBkdAcF4hzNliB2gHTTcBaAhHQKQDIPOpsGh1fZQoaAZHQG91FvQ4S6FoB00eAWgIR0CkA/HmaH9FdX2UKGgGR0BweAxzq8lHaAdNJwFoCEdApATLND+irXV9lChoBkdAcBS9oN/e+GgHTTEBaAhHQKQGQcGTs6d1fZQoaAZHQG/IA6Mir1doB025AWgIR0CkB4AEMb3odX2UKGgGR0BwZ8IsyzomaAdNKQFoCEdApAhaSV4X43V9lChoBkdAYmpHFxXGO2gHTegDaAhHQKQLzbQC0Wx1fZQoaAZHQHIQclXzUZxoB0v/aAhHQKQNFPnjhk11fZQoaAZHQHEwmb9ZRsNoB01CAWgIR0CkDf4KYzBRdX2UKGgGR0BixaQzUI9laAdN6ANoCEdApBJtY8uBc3V9lChoBkdAbyq7ZnL7oGgHTRgBaAhHQKQTL9tMwlB1fZQoaAZHQG1rcGkep4toB00CAWgIR0CkFHpZfUnYdX2UKGgGR0BtPYO6NEPUaAdNEAFoCEdApBU3ggow23V9lChoBkdAQNCXY150KmgHS+NoCEdApBXYYBNmDnV9lChoBkdAYGJtDUmUn2gHTegDaAhHQKQZRldTo+x1fZQoaAZHQHD1J8Sf16FoB00oAWgIR0CkGhhnSOR1dX2UKGgGR0BwfMhLXcxkaAdNMwFoCEdApBuJYPoV23V9lChoBkdAV3X8tPHktGgHTegDaAhHQKQe97hNucd1fZQoaAZHQHExDn/1g6VoB00xAWgIR0CkH9B2W6bwdX2UKGgGR8A3zwCr92ovaAdLx2gIR0CkIFxnOB1+dX2UKGgGR0BxBOvKU3XJaAdNOwFoCEdApCE9IbwSanV9lChoBkdAcJFR/EwWWWgHTTABaAhHQKQiq03Ov+x1fZQoaAZHQHDrKOgg5ipoB00xAWgIR0CkI4Tp5eJIdX2UKGgGR0BsOOhM8HObaAdNLwJoCEdApCUTP4VRDXV9lChoBkdAcL2cqvvBrWgHTREDaAhHQKQofI5HVgB1fZQoaAZHQC3dLlFMIu5oB0u5aAhHQKQpOn2qT8p1fZQoaAZHQDN8Lx7RfF9oB0vjaAhHQKQqmLv1DjR1fZQoaAZHQHCPBsZYPoVoB00ZAWgIR0CkK3B6Skj5dX2UKGgGR0A0NlzltCRfaAdL3GgIR0CkLA2WhRIjdX2UKGgGR0BWO1Li++M7aAdN6ANoCEdApC+B3kgfVHV9lChoBkdAclUhEBsAN2gHTeIBaAhHQKQxd/9YOlR1fZQoaAZHQG6C5zYEnstoB00/AWgIR0CkMlr+YMOPdX2UKGgGR0BwXRqIrOJMaAdNHgFoCEdApDMkBOpKjHV9lChoBkdAQZlKZlWfb2gHS+xoCEdApDPIekpI+XV9lChoBkdAbmPy08eS0WgHTSYBaAhHQKQ1L0163RZ1fZQoaAZHQG/wz7EYO2BoB00XAWgIR0CkNfi22G7BdX2UKGgGR0BxzJvZRKpUaAdNjgFoCEdApDcTYZl4DHV9lChoBkdAbrO8OkLx7WgHTUIBaAhHQKQ4mhtcfNl1fZQoaAZHQHEjc0UGmk5oB002AWgIR0CkOYckt29tdX2UKGgGR7/az+3pfQa8aAdLy2gIR0CkOh/ub7TEdX2UKGgGR0Bxsy1E3KjjaAdNFAFoCEdApDrojrzGxXV9lChoBkdAcGApX6qKg2gHTSQBaAhHQKQ8YiItUXJ1fZQoaAZHQG/0vvrnkktoB01JAWgIR0CkPWECV8kVdX2UKGgGR0BigXkFOfukaAdN6ANoCEdApEHugFotc3V9lChoBkdAcWvZYPoV22gHTXUBaAhHQKRDAoa1kUd1fZQoaAZHQHG+QDV6NVBoB01HAWgIR0CkRJFOfukUdX2UKGgGR0Bwn35O8CgcaAdNSQFoCEdApEWEQbuMM3V9lChoBkdAb88wX668QWgHTUkBaAhHQKRGe5aNdZ91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4692, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}