--- library_name: transformers license: mit base_model: ai4bharat/indic-bert tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Paraphrase_indicBERT_onfull_FT1 results: [] --- # Paraphrase_indicBERT_onfull_FT1 This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4705 - Accuracy: 0.788 - F1: 0.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.492964437401573e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6519 | 1.0 | 625 | 0.6043 | 0.682 | 0.6765 | | 0.5239 | 2.0 | 1250 | 0.7503 | 0.6875 | 0.6830 | | 0.5193 | 3.0 | 1875 | 0.5210 | 0.764 | 0.7636 | | 0.5727 | 4.0 | 2500 | 0.4705 | 0.788 | 0.7873 | | 0.4156 | 5.0 | 3125 | 0.6685 | 0.786 | 0.7860 | | 0.2547 | 6.0 | 3750 | 0.8505 | 0.7815 | 0.7810 | | 0.2266 | 7.0 | 4375 | 1.0129 | 0.774 | 0.7736 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0