File size: 2,055 Bytes
7fe2665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: mit
base_model: ai4bharat/indic-bert
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: MahaPhrase_IndicBERT_Finetuning_3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MahaPhrase_IndicBERT_Finetuning_3

This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3427
- Accuracy: 0.868
- F1: 0.8675

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.9441685921426482e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6401        | 1.0   | 71   | 0.5991          | 0.684    | 0.6831 |
| 0.5377        | 2.0   | 142  | 0.5039          | 0.732    | 0.7297 |
| 0.3809        | 3.0   | 213  | 0.4500          | 0.804    | 0.7898 |
| 0.2201        | 4.0   | 284  | 0.3427          | 0.868    | 0.8675 |
| 0.1614        | 5.0   | 355  | 0.3923          | 0.856    | 0.8558 |
| 0.1114        | 6.0   | 426  | 0.3913          | 0.864    | 0.8620 |
| 0.1084        | 7.0   | 497  | 0.4789          | 0.844    | 0.8439 |
| 0.0457        | 8.0   | 568  | 0.4538          | 0.856    | 0.8557 |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0