form-field-detector / pipeline.py
AaronNL's picture
Upload 2 files
7646f7a verified
from transformers import Pipeline
import torch
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from torchvision.transforms import transforms
from huggingface_hub import hf_hub_download
import io
class FormFieldDetectionPipeline(Pipeline):
def __init__(self, model, tokenizer=None, **kwargs):
super().__init__(model=model, tokenizer=tokenizer, **kwargs)
self.confidence_threshold = 0.8
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
postprocess_kwargs = {}
# Allow confidence threshold to be configured
if "confidence_threshold" in kwargs:
postprocess_kwargs["confidence_threshold"] = kwargs["confidence_threshold"]
return preprocess_kwargs, {}, postprocess_kwargs
def preprocess(self, image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
elif not isinstance(image, Image.Image):
raise ValueError("Input must be an image path or PIL Image")
transform = transforms.ToTensor()
image_tensor = transform(image)
return {"image_tensor": image_tensor, "original_image": image}
def _forward(self, model_inputs):
image_tensor = model_inputs["original_image"]
with torch.no_grad():
predictions = self.model([image_tensor])
return {"predictions": predictions[0], "original_image": image_tensor}
def postprocess(self, model_outputs, confidence_threshold=0.8):
predictions = model_outputs["predictions"]
original_image = model_outputs["original_image"]
# Filter predictions by confidence
mask = predictions["scores"] > confidence_threshold
boxes = predictions["boxes"][mask]
labels = predictions["labels"][mask]
# Create visualization
plt.figure(figsize=(12, 8))
plt.imshow(original_image)
# Draw boxes for fields (odd-numbered labels)
for box, label in zip(boxes, labels):
if label % 2 == 1: # Only odd numbered labels are fields
x1, y1, x2, y2 = box.tolist()
rect = patches.Rectangle(
(x1, y1), x2 - x1, y2 - y1,
linewidth=1, edgecolor="r", facecolor="none"
)
plt.gca().add_patch(rect)
plt.axis("off")
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
output_image = Image.open(buf)
return {
"image": output_image,
"boxes": boxes.tolist(),
"labels": labels.tolist()
}
# Add this to your model's repo
def pipeline():
return FormFieldDetectionPipeline(
model="AaronNL/form-field-detector",
task="object-detection"
)