AXCXEPT commited on
Commit
c4c4d46
·
verified ·
1 Parent(s): 49d4c43

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -2
README.md CHANGED
@@ -18,8 +18,11 @@ base_model:
18
  <!-- Provide a quick summary of what the model is/does. -->
19
 
20
  ## Model Details
21
- This model is a Reasoner version of the phi-4 model by employing open-r1, which mimics the Distill methodology of Deepseek-R1.
22
- (Deepseek-R1のDistill手法を模倣した、open-r1を採用して、phi-4モデルを Reasonerにしたモデルです)
 
 
 
23
 
24
  ## Example Output
25
  ```
@@ -69,6 +72,48 @@ pip install --upgrade transformers accelerate datasets trl
69
  ### Predict(using AutoModelForCausalLM)
70
  ```python
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ```
73
  -------------------
74
  ### Predict(using vllm)
 
18
  <!-- Provide a quick summary of what the model is/does. -->
19
 
20
  ## Model Details
21
+ This model is a Reasoner version of the phi-4 model by employing open-r1, which mimics the Distill methodology of Deepseek-R1. In particular, since it is specialized for Japanese, answers will be given in Japanese in principle.
22
+ It can be made more flexible by interweaving English.
23
+
24
+ Deepseek-R1のDistill手法を模倣した、open-r1を採用して、phi-4モデルを Reasonerにしたモデルです。特に日本語に特化させているため、原則日本語で回答します。
25
+ 英語を織り交ぜることでより柔軟にすることが可能です。
26
 
27
  ## Example Output
28
  ```
 
72
  ### Predict(using AutoModelForCausalLM)
73
  ```python
74
 
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+
77
+
78
+
79
+ model_name = "AXCXEPT/phi-4-open-R1-Distill-EZOv1"
80
+
81
+ model = AutoModelForCausalLM.from_pretrained(
82
+ model_name,
83
+ torch_dtype="auto",
84
+ device_map="auto"
85
+ )
86
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
87
+
88
+ prompt = f"""
89
+ ある父と子の年齢に関する問題があります。条件は次の通りです:
90
+
91
+ 父の現在の年齢は息子の現在の年齢の3倍です。
92
+ 6年前、父の年齢は息子の年齢の5倍でした。
93
+ 父と息子の年齢を求めてください。
94
+ """
95
+ messages = [
96
+ {"role": "system", "content": "You are an excellent AI."},
97
+ {"role": "user", "content": prompt}
98
+ ]
99
+ text = tokenizer.apply_chat_template(
100
+ messages,
101
+ tokenize=False,
102
+ add_generation_prompt=True
103
+ )
104
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
105
+
106
+ generated_ids = model.generate(
107
+ **model_inputs,
108
+ max_new_tokens=2048
109
+ )
110
+ generated_ids = [
111
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
112
+ ]
113
+
114
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
115
+
116
+ print(response)
117
  ```
118
  -------------------
119
  ### Predict(using vllm)