ALmonster commited on
Commit
9487267
·
verified ·
1 Parent(s): 8d64a6d

Upload 17 files

Browse files
Vision_Project.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import re
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ class IdentityMap(nn.Module):
7
+
8
+ def __init__(self):
9
+ super().__init__()
10
+
11
+ def forward(self, x, *args, **kwargs):
12
+ return x
13
+
14
+ @property
15
+ def config(self):
16
+ return {'mm_projector_type': 'identity'}
17
+
18
+ def mlp2x_gelu(projector_type):
19
+ # mm_hidden_size = 1024
20
+ mm_hidden_size = 1280
21
+ hidden_size = 3584
22
+
23
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
24
+ if mlp_gelu_match:
25
+ mlp_depth = int(mlp_gelu_match.group(1))
26
+ modules = [nn.Linear(mm_hidden_size, hidden_size)]
27
+ for _ in range(1, mlp_depth):
28
+ modules.append(nn.GELU())
29
+ modules.append(nn.Linear(hidden_size, hidden_size))
30
+ return nn.Sequential(*modules)
31
+
32
+ if projector_type == 'identity':
33
+ return IdentityMap()
34
+
35
+ raise ValueError(f'Unknown projector type: {projector_type}')
Vision_Tower.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from transformers import CLIPVisionModel
4
+
5
+
6
+ class clip_vit_large_patch14_336(nn.Module):
7
+
8
+ def __init__(self, vision_tower, use_resize_pos=True):
9
+ super().__init__()
10
+
11
+ self.is_loaded = False
12
+ self.is_resize_pos = False
13
+
14
+ self.vision_tower_name = vision_tower
15
+ self.select_layer = -1
16
+ self.select_feature = 'patch'
17
+ self.load_model()
18
+
19
+ #change model to input shape[490*490]
20
+ if use_resize_pos:
21
+ self.resize_pos()
22
+
23
+ def load_model(self):
24
+ self.vision_tower = CLIPVisionModel.from_pretrained(
25
+ self.vision_tower_name)
26
+ self.vision_tower.requires_grad_(False)
27
+
28
+ self.is_loaded = True
29
+
30
+ def resize_pos(self):
31
+ pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
32
+ pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
33
+ orig_size = 24 #336/14
34
+ new_size = 35 #490/14
35
+
36
+ if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
37
+ self.is_resize_pos = True
38
+ else:
39
+ embedding_size = pos_embed_checkpoint.shape[-1]
40
+ num_extra_tokens = 1
41
+ new_num = new_size**2 + num_extra_tokens
42
+ #print('Position interpolate from %dx%d to %dx%d' %
43
+ # (orig_size, orig_size, new_size, new_size))
44
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
45
+ # only the position tokens are interpolated
46
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
47
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
48
+ embedding_size).permute(
49
+ 0, 3, 1, 2)
50
+ pos_tokens = torch.nn.functional.interpolate(
51
+ pos_tokens,
52
+ size=(new_size, new_size),
53
+ mode='bicubic',
54
+ align_corners=False)
55
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
56
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
57
+
58
+ new_pos_embed = new_pos_embed.squeeze(0)
59
+
60
+ self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
61
+ new_num, 1024)
62
+ self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
63
+ new_pos_embed.to(pos_embed_checkpoint.dtype))
64
+ self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
65
+ new_num).expand((1, -1))
66
+
67
+ self.is_resize_pos = True
68
+
69
+ def feature_select(self, image_forward_outs):
70
+ image_features = image_forward_outs.hidden_states[self.select_layer]
71
+ if self.select_feature == 'patch':
72
+ image_features = image_features[:, 1:]
73
+ elif self.select_feature == 'cls_patch':
74
+ image_features = image_features
75
+ else:
76
+ raise ValueError(
77
+ f'Unexpected select feature: {self.select_feature}')
78
+ return image_features
79
+
80
+ def forward(self, images):
81
+ if not self.is_loaded:
82
+ self.load_model()
83
+ if type(images) is list: # not batch infurence speed!
84
+ image_features = []
85
+ for image in images:
86
+ image_forward_out = self.vision_tower(
87
+ image.to(device=self.device,
88
+ dtype=self.dtype).unsqueeze(0),
89
+ output_hidden_states=True)
90
+ image_feature = self.feature_select(image_forward_out).to(
91
+ image.dtype)
92
+ image_features.append(image_feature)
93
+ else:
94
+ image_forward_outs = self.vision_tower(
95
+ images.to(device=self.device, dtype=self.dtype),
96
+ output_hidden_states=True)
97
+ image_features = self.feature_select(image_forward_outs).to(
98
+ images.dtype)
99
+
100
+ return image_features
101
+
102
+ @property
103
+ def device(self):
104
+ return self.vision_tower.device
105
+
106
+ @property
107
+ def dtype(self):
108
+ return self.vision_tower.dtype
109
+
110
+ class DFN5B_CLIP_ViT_H_14_378(nn.Module):
111
+
112
+ def __init__(self, vision_tower):
113
+ super().__init__()
114
+
115
+ self.is_loaded = False
116
+ self.is_resize_pos = False
117
+
118
+ self.vision_tower_name = vision_tower
119
+ self.select_layer = -1
120
+ self.select_feature = 'patch'
121
+ self.load_model()
122
+
123
+ def load_model(self):
124
+ self.vision_tower = CLIPVisionModel.from_pretrained(
125
+ self.vision_tower_name)
126
+ self.vision_tower.requires_grad_(False)
127
+
128
+ self.is_loaded = True
129
+
130
+ def feature_select(self, image_forward_outs):
131
+ image_features = image_forward_outs.hidden_states[self.select_layer]
132
+ if self.select_feature == 'patch':
133
+ image_features = image_features[:, 1:]
134
+ elif self.select_feature == 'cls_patch':
135
+ image_features = image_features
136
+ else:
137
+ raise ValueError(
138
+ f'Unexpected select feature: {self.select_feature}')
139
+ return image_features
140
+
141
+ def forward(self, images):
142
+ if not self.is_loaded:
143
+ self.load_model()
144
+ if type(images) is list: # not batch infurence speed!
145
+ image_features = []
146
+ for image in images:
147
+ image_forward_out = self.vision_tower(
148
+ image.to(device=self.device,
149
+ dtype=self.dtype).unsqueeze(0),
150
+ output_hidden_states=True)
151
+ image_feature = self.feature_select(image_forward_out).to(
152
+ image.dtype)
153
+ image_features.append(image_feature)
154
+ else:
155
+ image_forward_outs = self.vision_tower(
156
+ images.to(device=self.device, dtype=self.dtype),
157
+ output_hidden_states=True)
158
+ image_features = self.feature_select(image_forward_outs).to(
159
+ images.dtype)
160
+
161
+ return image_features
162
+
163
+ @property
164
+ def device(self):
165
+ return self.vision_tower.device
166
+
167
+ @property
168
+ def dtype(self):
169
+ return self.vision_tower.dtype
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/lwt/tech/mcmd",
3
+ "architectures": [
4
+ "mcmdForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_mcmd.mcmdConfig",
8
+ "AutoModel": "modeling_mcmd.mcmdForCausalLM",
9
+ "AutoModelForCausalLM": "modeling_mcmd.mcmdForCausalLM"
10
+ },
11
+ "clip_path": "/root/LWT/Models/DFN5B-CLIP-ViT-H-14-378",
12
+ "input_img_size": 378,
13
+ "lm_model": {
14
+ "attention_dropout": 0.0,
15
+ "bos_token_id": 151643,
16
+ "eos_token_id": 151645,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 3584,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18944,
21
+ "max_position_embeddings": 32768,
22
+ "max_window_layers": 28,
23
+ "model_type": "qwen2",
24
+ "num_attention_heads": 28,
25
+ "num_hidden_layers": 28,
26
+ "num_key_value_heads": 4,
27
+ "rms_norm_eps": 1e-06,
28
+ "rope_theta": 1000000.0,
29
+ "sliding_window": 131072,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.41.2",
33
+ "use_cache": true,
34
+ "use_sliding_window": false,
35
+ "vocab_size": 152064
36
+ },
37
+ "lm_path": "/root/LWT/Models/Qwen2-7B-Instruct",
38
+ "max_length": 4096,
39
+ "model_type": "mcmd",
40
+ "torch_dtype": "bfloat16",
41
+ "transformers_version": "4.40.0",
42
+ "vision_config": "mlp2x_gelu",
43
+ "vocab_size": 152064
44
+ }
configuration_mcmd.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers.configuration_utils import PretrainedConfig
3
+
4
+ class mcmdConfig(PretrainedConfig):
5
+
6
+ model_type = "mcmd"
7
+ _auto_class = "AutoConfig"
8
+
9
+ def __init__(
10
+ self,
11
+ **kwargs,
12
+ ):
13
+ super().__init__(
14
+ **kwargs,
15
+ )
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47d9572190896617f2a8d3260ef421608c8dfd4de20941fa747bc3539a8099d2
3
+ size 4877661712
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a14fb3d73d667f9e9ae1e842cad95d0e744e30e293df64be2e82de0fbc50ce1
3
+ size 4932752112
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efe22d5e53941a70effa8c5333a62e9febb60e3356cebf6cb8dafd465cbcca4d
3
+ size 4330866208
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:905adcc732723412112b06f2ffa551bd8d9c21a757552c4188b3ee337b29e80b
3
+ size 2387691576
model.safetensors.index.json ADDED
@@ -0,0 +1,869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16528855552
4
+ },
5
+ "weight_map": {
6
+ "lm_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "lm_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "lm_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "lm_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "lm_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "lm_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "lm_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "lm_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "lm_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "lm_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "lm_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "lm_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "lm_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "lm_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "lm_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "lm_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "lm_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "lm_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "lm_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "lm_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "lm_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "lm_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "lm_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "lm_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "lm_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "lm_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "lm_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "lm_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "lm_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "lm_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "lm_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "lm_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "lm_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "lm_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "lm_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "lm_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "lm_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "lm_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "lm_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "lm_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "lm_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "lm_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "lm_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "lm_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "lm_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "lm_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "lm_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "lm_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "lm_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "lm_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "lm_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "lm_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "lm_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "lm_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "lm_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "lm_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "lm_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "lm_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "lm_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "lm_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "lm_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "lm_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "lm_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "lm_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "lm_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "lm_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "lm_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "lm_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "lm_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "lm_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "lm_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "lm_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "lm_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "lm_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "lm_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "lm_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "lm_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "lm_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "lm_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "lm_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "lm_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "lm_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "lm_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "lm_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "lm_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "lm_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "lm_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "lm_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "lm_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "lm_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "lm_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "lm_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "lm_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "lm_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "lm_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "lm_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "lm_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "lm_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "lm_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "lm_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "lm_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "lm_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "lm_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "lm_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "lm_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "lm_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "lm_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "lm_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "lm_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "lm_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "lm_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "lm_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "lm_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "lm_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "lm_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "lm_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "lm_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "lm_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "lm_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "lm_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "lm_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "lm_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "lm_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "lm_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "lm_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "lm_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "lm_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "lm_model.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "lm_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "lm_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "lm_model.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "lm_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "lm_model.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "lm_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "lm_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "lm_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "lm_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "lm_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "lm_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "lm_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "lm_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "lm_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "lm_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "lm_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "lm_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "lm_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "lm_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "lm_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "lm_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "lm_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "lm_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "lm_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "lm_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "lm_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "lm_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "lm_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "lm_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "lm_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "lm_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "lm_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "lm_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "lm_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "lm_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "lm_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "lm_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "lm_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "lm_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "lm_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "lm_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "lm_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "lm_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "lm_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "lm_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "lm_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "lm_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "lm_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "lm_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "lm_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "lm_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "lm_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "lm_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "lm_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "lm_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "lm_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "lm_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "lm_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "lm_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "lm_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "lm_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "lm_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "lm_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "lm_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "lm_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "lm_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "lm_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "lm_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "lm_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "lm_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "lm_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "lm_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "lm_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "lm_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "lm_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "lm_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "lm_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "lm_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "lm_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "lm_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "lm_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "lm_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "lm_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "lm_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "lm_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "lm_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "lm_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "lm_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "lm_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "lm_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "lm_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "lm_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "lm_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "lm_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "lm_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "lm_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "lm_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "lm_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "lm_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "lm_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "lm_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "lm_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "lm_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "lm_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "lm_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "lm_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "lm_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "lm_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "lm_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "lm_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "lm_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "lm_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "lm_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "lm_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "lm_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "lm_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "lm_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "lm_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "lm_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "lm_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "lm_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "lm_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "lm_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "lm_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "lm_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "lm_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "lm_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "lm_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "lm_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "lm_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "lm_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "lm_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "lm_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "lm_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "lm_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "lm_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "lm_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "lm_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "lm_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "lm_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "lm_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "lm_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "lm_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "lm_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "lm_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "lm_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "lm_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "lm_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "lm_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "lm_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "lm_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "lm_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "lm_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "lm_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "lm_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "lm_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "lm_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "lm_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "lm_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "lm_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "lm_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "lm_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "lm_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "lm_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "lm_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "lm_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "lm_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "lm_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "lm_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "lm_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "lm_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "lm_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "lm_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "lm_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "lm_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "lm_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "lm_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "lm_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "lm_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "lm_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "lm_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "lm_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "lm_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "lm_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "lm_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "lm_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "lm_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "lm_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "lm_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "lm_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "lm_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "lm_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "lm_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "lm_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "lm_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "lm_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "lm_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "lm_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "lm_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "lm_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "lm_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "lm_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "lm_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "lm_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "lm_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "lm_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "lm_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "lm_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "lm_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "lm_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "lm_model.model.norm.weight": "model-00003-of-00004.safetensors",
345
+ "vision_proj.0.bias": "model-00004-of-00004.safetensors",
346
+ "vision_proj.0.weight": "model-00004-of-00004.safetensors",
347
+ "vision_proj.2.bias": "model-00004-of-00004.safetensors",
348
+ "vision_proj.2.weight": "model-00004-of-00004.safetensors",
349
+ "vit.vision_tower.vision_model.embeddings.class_embedding": "model-00004-of-00004.safetensors",
350
+ "vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
351
+ "vit.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
352
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
353
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
354
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
355
+ "vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
356
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
357
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
358
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
359
+ "vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
360
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
361
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
362
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
363
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
364
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
365
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
366
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
367
+ "vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
368
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
369
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
370
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
371
+ "vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
372
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
373
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
374
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
375
+ "vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
376
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
377
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
378
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
379
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
380
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
381
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
382
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
383
+ "vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
384
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
385
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
386
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
387
+ "vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
388
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
389
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
390
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
391
+ "vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
392
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
393
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
394
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
395
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
396
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
397
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
398
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
399
+ "vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
400
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
401
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
402
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
403
+ "vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
404
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
405
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
406
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
407
+ "vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
408
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
409
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
410
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
411
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
412
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
413
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
414
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
415
+ "vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
416
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
417
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
418
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
419
+ "vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
420
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
421
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
422
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
423
+ "vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
424
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
425
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
426
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
427
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
428
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
429
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
430
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
431
+ "vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
432
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
433
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
434
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
435
+ "vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
436
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
437
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
438
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
439
+ "vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
440
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
441
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
442
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
443
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
444
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
445
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
446
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
447
+ "vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
448
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
449
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
450
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
451
+ "vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
452
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
453
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
454
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
455
+ "vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
456
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
457
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
458
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
459
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
460
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
461
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
462
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
463
+ "vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
464
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
465
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
466
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
467
+ "vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
468
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
469
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
470
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
471
+ "vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
472
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
473
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
474
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
475
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
476
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
477
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
478
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
479
+ "vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
480
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
481
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
482
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
483
+ "vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
484
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
485
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
486
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
487
+ "vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
488
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
489
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
490
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
491
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
492
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
493
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
494
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
495
+ "vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
496
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
497
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
498
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
499
+ "vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
500
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
501
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
502
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
503
+ "vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
504
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
505
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
506
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
507
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
508
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
509
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
510
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
511
+ "vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
512
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
513
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
514
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
515
+ "vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
516
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
517
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
518
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
519
+ "vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
520
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
521
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
522
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
523
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
524
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
525
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
526
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
527
+ "vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
528
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
529
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
530
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
531
+ "vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
532
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
533
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
534
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
535
+ "vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
536
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
537
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
538
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
539
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
540
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
541
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
542
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
543
+ "vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
544
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
545
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
546
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
547
+ "vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
548
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
549
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
550
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
551
+ "vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
552
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
553
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
554
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
555
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
556
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
557
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
558
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
559
+ "vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
560
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
561
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
562
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
563
+ "vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
564
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
565
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
566
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
567
+ "vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
568
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
569
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
570
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
571
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
572
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
573
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
574
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
575
+ "vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
576
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
577
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
578
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
579
+ "vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
580
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
581
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
582
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
583
+ "vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
584
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
585
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
586
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
587
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
588
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
589
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
590
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
591
+ "vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
592
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
593
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
594
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
595
+ "vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
596
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
597
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
598
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
599
+ "vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
600
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
601
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
602
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
603
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
604
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
605
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
606
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
607
+ "vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
608
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
609
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
610
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
611
+ "vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
612
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
613
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
614
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
615
+ "vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
616
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
617
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
618
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
619
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
620
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
621
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
622
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
623
+ "vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
624
+ "vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
625
+ "vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
626
+ "vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
627
+ "vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
628
+ "vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
629
+ "vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
630
+ "vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
631
+ "vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
632
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
633
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
634
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
635
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
636
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
637
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
638
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
639
+ "vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
640
+ "vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
641
+ "vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
642
+ "vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
643
+ "vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
644
+ "vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
645
+ "vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
646
+ "vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
647
+ "vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
648
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
649
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
650
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
651
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
652
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
653
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
654
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
655
+ "vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
656
+ "vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
657
+ "vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
658
+ "vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
659
+ "vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
660
+ "vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
661
+ "vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
662
+ "vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
663
+ "vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
664
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
665
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
666
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
667
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
668
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
669
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
670
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
671
+ "vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
672
+ "vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.bias": "model-00004-of-00004.safetensors",
673
+ "vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.weight": "model-00004-of-00004.safetensors",
674
+ "vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.bias": "model-00004-of-00004.safetensors",
675
+ "vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.weight": "model-00004-of-00004.safetensors",
676
+ "vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.bias": "model-00004-of-00004.safetensors",
677
+ "vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.weight": "model-00004-of-00004.safetensors",
678
+ "vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.bias": "model-00004-of-00004.safetensors",
679
+ "vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.weight": "model-00004-of-00004.safetensors",
680
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
681
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
682
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
683
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
684
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
685
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
686
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
687
+ "vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
688
+ "vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.bias": "model-00004-of-00004.safetensors",
689
+ "vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.weight": "model-00004-of-00004.safetensors",
690
+ "vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.bias": "model-00004-of-00004.safetensors",
691
+ "vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.weight": "model-00004-of-00004.safetensors",
692
+ "vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.bias": "model-00004-of-00004.safetensors",
693
+ "vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.weight": "model-00004-of-00004.safetensors",
694
+ "vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.bias": "model-00004-of-00004.safetensors",
695
+ "vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.weight": "model-00004-of-00004.safetensors",
696
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
697
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
698
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
699
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
700
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
701
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
702
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
703
+ "vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
704
+ "vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.bias": "model-00004-of-00004.safetensors",
705
+ "vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.weight": "model-00004-of-00004.safetensors",
706
+ "vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.bias": "model-00004-of-00004.safetensors",
707
+ "vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.weight": "model-00004-of-00004.safetensors",
708
+ "vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.bias": "model-00004-of-00004.safetensors",
709
+ "vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.weight": "model-00004-of-00004.safetensors",
710
+ "vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.bias": "model-00004-of-00004.safetensors",
711
+ "vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.weight": "model-00004-of-00004.safetensors",
712
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
713
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
714
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
715
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
716
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
717
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
718
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
719
+ "vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
720
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
721
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
722
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
723
+ "vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
724
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
725
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
726
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
727
+ "vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
728
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
729
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
730
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
731
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
732
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
733
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
734
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
735
+ "vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
736
+ "vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.bias": "model-00004-of-00004.safetensors",
737
+ "vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.weight": "model-00004-of-00004.safetensors",
738
+ "vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.bias": "model-00004-of-00004.safetensors",
739
+ "vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.weight": "model-00004-of-00004.safetensors",
740
+ "vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.bias": "model-00004-of-00004.safetensors",
741
+ "vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.weight": "model-00004-of-00004.safetensors",
742
+ "vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.bias": "model-00004-of-00004.safetensors",
743
+ "vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.weight": "model-00004-of-00004.safetensors",
744
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
745
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
746
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
747
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
748
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
749
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
750
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
751
+ "vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
752
+ "vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.bias": "model-00004-of-00004.safetensors",
753
+ "vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.weight": "model-00004-of-00004.safetensors",
754
+ "vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.bias": "model-00004-of-00004.safetensors",
755
+ "vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.weight": "model-00004-of-00004.safetensors",
756
+ "vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.bias": "model-00004-of-00004.safetensors",
757
+ "vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.weight": "model-00004-of-00004.safetensors",
758
+ "vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.bias": "model-00004-of-00004.safetensors",
759
+ "vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.weight": "model-00004-of-00004.safetensors",
760
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
761
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
762
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
763
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
764
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
765
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
766
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
767
+ "vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
768
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
769
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
770
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
771
+ "vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
772
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
773
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
774
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
775
+ "vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
776
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
777
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
778
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
779
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
780
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
781
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
782
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
783
+ "vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
784
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
785
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
786
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
787
+ "vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
788
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
789
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
790
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
791
+ "vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
792
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
793
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
794
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
795
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
796
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
797
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
798
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
799
+ "vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
800
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
801
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
802
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
803
+ "vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
804
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
805
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
806
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
807
+ "vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
808
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
809
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
810
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
811
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
812
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
813
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
814
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
815
+ "vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
816
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
817
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
818
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
819
+ "vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
820
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
821
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
822
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
823
+ "vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
824
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
825
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
826
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
827
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
828
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
829
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
830
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
831
+ "vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
832
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
833
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
834
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
835
+ "vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
836
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
837
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
838
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
839
+ "vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
840
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
841
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
842
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
843
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
844
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
845
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
846
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
847
+ "vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
848
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
849
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
850
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
851
+ "vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
852
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
853
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
854
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
855
+ "vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
856
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
857
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
858
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
859
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
860
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
861
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
862
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
863
+ "vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
864
+ "vit.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
865
+ "vit.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
866
+ "vit.vision_tower.vision_model.pre_layrnorm.bias": "model-00004-of-00004.safetensors",
867
+ "vit.vision_tower.vision_model.pre_layrnorm.weight": "model-00004-of-00004.safetensors"
868
+ }
869
+ }
modeling_mcmd.py ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #basic backage
2
+ import os
3
+ import copy
4
+ import warnings
5
+ from PIL import Image
6
+ from typing import Optional, Tuple, Union, List, Callable
7
+
8
+ #torch and transformer
9
+ import torch
10
+ from torch import nn
11
+ from torch.nn import CrossEntropyLoss
12
+ from torch.distributions.categorical import Categorical
13
+
14
+ from torchvision import transforms
15
+ from torchvision.transforms.functional import InterpolationMode
16
+
17
+
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.generation.streamers import BaseStreamer
20
+ from transformers import AutoModelForCausalLM, AutoTokenizer
21
+ from transformers.modeling_outputs import CausalLMOutputWithPast
22
+
23
+
24
+ #mcmd
25
+ from .configuration_mcmd import mcmdConfig
26
+ from .Vision_Tower import clip_vit_large_patch14_336,DFN5B_CLIP_ViT_H_14_378
27
+ from .Vision_Project import mlp2x_gelu
28
+
29
+ def build_lm_model_tokenizer(lm_model_name : str, lm_tokenizer_name : str):
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ lm_model_name,
32
+ torch_dtype="auto"
33
+ )
34
+ tokenizer = AutoTokenizer.from_pretrained(lm_tokenizer_name)
35
+ return model,tokenizer
36
+
37
+ def build_vision_projector(vision_config):
38
+ if vision_config=='mlp2x_gelu':
39
+ return mlp2x_gelu(vision_config)
40
+
41
+ def build_vision_tower(vision_tower_name=''):
42
+ if vision_tower_name.endswith('clip-vit-large-patch14-336'):
43
+ return clip_vit_large_patch14_336(vision_tower_name,use_resize_pos=True)
44
+ elif vision_tower_name.endswith('DFN5B-CLIP-ViT-H-14-378'):
45
+ return DFN5B_CLIP_ViT_H_14_378(vision_tower_name)
46
+
47
+ class mcmdPreTrainedModel(PreTrainedModel):
48
+ # config_class = mcmdConfig
49
+
50
+ def _init_weights(self, module):
51
+ std = self.config.initializer_range
52
+ if isinstance(module, nn.Linear):
53
+ module.weight.data.normal_(mean=0.0, std=std)
54
+ if module.bias is not None:
55
+ module.bias.data.zero_()
56
+ elif isinstance(module, nn.Embedding):
57
+ module.weight.data.normal_(mean=0.0, std=std)
58
+ if module.padding_idx is not None:
59
+ module.weight.data[module.padding_idx].zero_()
60
+
61
+
62
+ class mcmdForCausalLM(mcmdPreTrainedModel):
63
+ _auto_class = 'AutoModelForCausalLM'
64
+
65
+ def __init__(self, config):
66
+ super().__init__(config)
67
+
68
+ #Initialize language model
69
+ self.max_length = config.max_length
70
+ self.vocab_size = config.lm_model['vocab_size']
71
+ self.lm_model,self.lm_tokenizer = build_lm_model_tokenizer(config.lm_path,config.lm_path)
72
+
73
+ #Initialize vit and vision_proj
74
+ self.vit = build_vision_tower(config.clip_path)
75
+ self.vision_proj = build_vision_projector(config.vision_config)
76
+
77
+ # Initialize vis_processor for Image Preprocessing. The mean and std is equal in dfn5b and clip-vit
78
+ self.vis_processor = transforms.Compose([
79
+ transforms.Resize((config.input_img_size, config.input_img_size),
80
+ interpolation=InterpolationMode.BICUBIC),
81
+ transforms.ToTensor(),
82
+ transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
83
+ (0.26862954, 0.26130258, 0.27577711)),
84
+ ])
85
+
86
+ self.eos_token_id = self.lm_tokenizer.eos_token_id # 151645 <|im_end|>
87
+
88
+ def print_trainable_parameters(self):
89
+ print('可训练参数:')
90
+ trainable_params = 0
91
+ all_param = 0
92
+ for _, param in self.named_parameters():
93
+ all_param += param.numel()
94
+ if param.requires_grad:
95
+ trainable_params += param.numel()
96
+ print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}")
97
+
98
+ print('可训练的模块:')
99
+ for name, param in self.named_parameters():
100
+ if param.requires_grad:
101
+ print(name, param.shape)
102
+
103
+ def print_model_layers_and_parameters(self):
104
+ print('模型参数:')
105
+ for name, module in self.named_modules():
106
+ if hasattr(module, 'weight'):
107
+ num_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
108
+ print(f"Layer: {name}, Type: {module.__class__.__name__}, Trainable Parameters: {num_params}")
109
+ else:
110
+ print(f"Layer: {name}, Type: {module.__class__.__name__}, No trainable parameters")
111
+
112
+ def print_tokens_labels(self, tokens: List[int], target: List[int]):
113
+ print("Sanity Check >>>>>>>>>>>>>")
114
+ temp_tokens=copy.deepcopy(tokens[0].tolist())
115
+ temp_target=copy.deepcopy(target[0].tolist())
116
+ save_name='check_token_target.txt'
117
+ if os.path.exists(save_name):
118
+ os.remove(save_name)
119
+ ff = open(save_name,'a+')
120
+ for t, m in zip(temp_tokens, temp_target):
121
+ if t<0:
122
+ decoded='<Image Data>'
123
+ else:
124
+ decoded = self.lm_tokenizer.batch_decode([t], skip_special_tokens=False)[0]
125
+ print("%20s: %6d -> %6d" % (repr(decoded), t, m))
126
+ ff.write("%20s: %6d -> %6d\n" % (repr(decoded), t, m))
127
+ ff.close()
128
+ print("<<<<<<<<<<<<< Sanity Check")
129
+ assert len(tokens) == len(target), f"length mismatch: {len(tokens)} vs {len(target)}"
130
+
131
+ def img2emb(self, image):
132
+ image=image.bfloat16()
133
+ img_embeds = self.vision_proj(self.vit(image.to(self.device)))
134
+ atts_img = torch.ones(
135
+ img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
136
+
137
+ img_target = torch.ones(
138
+ img_embeds.size()[:2], dtype=torch.long).to(
139
+ img_embeds.device) * -100
140
+
141
+ return img_embeds, atts_img, img_target
142
+
143
+ def encode_img(self, image):
144
+ if image is None:
145
+ return None
146
+ if isinstance(image, str):
147
+ image = Image.open(image).convert('RGB')
148
+ # Image Preprocessing
149
+ # unsqueeze insert 1 dim in front of 0
150
+ # image is [1, 3, 490, 490]
151
+ image = self.vis_processor(image).unsqueeze(0).to(self.device)
152
+ else:
153
+ assert isinstance(image, torch.Tensor)
154
+
155
+ img_embeds, _, _ = self.img2emb(image)
156
+ '''
157
+ img_embeds : [1, 1225, 4096] 1225?
158
+ atts_img = torch.ones([1, 1225])
159
+ img_target = torch.ones([1, 1225]) * -100
160
+ '''
161
+ return img_embeds
162
+
163
+ def get_tensor_image(self,fns):
164
+ image_data=[]
165
+
166
+ for one in fns:
167
+ t_one=self.encode_img(one)
168
+ image_data.append(t_one)
169
+
170
+ image = torch.cat(image_data, dim=0)
171
+
172
+ return image
173
+
174
+
175
+ def interleav_wrap_chat(self, messages, image):
176
+
177
+ #Deal prompt using qwen2 template, which is from transformers/tokenization_utils_base.py
178
+ prompt = self.lm_tokenizer.apply_chat_template(
179
+ messages,
180
+ tokenize=False,
181
+ add_generation_prompt=True
182
+ )
183
+ '''
184
+ repr(prompt) add_generation_prompt=True : '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n<|im_start|>assistant\n'
185
+ repr(prompt) add_generation_prompt=False: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n'
186
+ '''
187
+
188
+ if image is None:
189
+ im_len=0
190
+ image_nums=0
191
+ parts = prompt.split('<ImageHere>')
192
+ print(prompt.split('<ImageHere>'))
193
+ assert len(prompt.split('<ImageHere>'))==1
194
+ else:
195
+ im_len = image.shape[1] #1225 730
196
+ image_nums = len(image)
197
+ parts = prompt.split('<ImageHere>')
198
+ wrap_embeds = []
199
+ temp_len = 0
200
+
201
+ if len(parts) != image_nums + 1:
202
+ raise ValueError('Invalid <ImageHere> prompt format.')
203
+
204
+ for idx, part in enumerate(parts):
205
+ if len(part) > 0:
206
+ part_tokens = self.lm_tokenizer(part, return_tensors='pt').to(self.device)
207
+ part_embeds = self.lm_model.model.embed_tokens(
208
+ part_tokens.input_ids)
209
+ wrap_embeds.append(part_embeds)
210
+
211
+ temp_len += part_embeds.shape[1]
212
+ if idx < image_nums:
213
+ wrap_embeds.append(image[idx].unsqueeze(0))
214
+ temp_len += im_len
215
+
216
+ if temp_len > self.max_length:
217
+ break
218
+
219
+ wrap_embeds = torch.cat(wrap_embeds, dim=1) #torch.Size([1, 2481, 3584])
220
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
221
+
222
+ inputs = {
223
+ 'inputs_embeds': wrap_embeds
224
+ }
225
+ return inputs
226
+
227
+ def mask_user_targets(self, input_ids):
228
+ target_batch = []
229
+ for bs in range(input_ids.shape[0]):
230
+ ids = input_ids[bs]
231
+ targets = copy.deepcopy(ids)
232
+ im_round=0
233
+ id_im_start=0
234
+ # id_im_end=0
235
+ for i, temp_id in enumerate(ids):
236
+ if temp_id == 151644:
237
+ im_round+=1
238
+ if im_round==2:
239
+ id_im_start=0
240
+ targets[id_im_start:i + 1] = -100
241
+ id_im_start=i
242
+ elif im_round%2==0:
243
+ id_im_start=i
244
+ elif im_round%2==1:
245
+ targets[id_im_start:i + 3] = -100
246
+ # if temp_id == 151645:
247
+ # if im_round==1:
248
+ # id_im_end=i
249
+
250
+
251
+ target_batch.append(targets.unsqueeze(0))
252
+
253
+ target_batch = torch.cat(target_batch, dim=0)
254
+ return target_batch
255
+
256
+ def interleav_wrap(self, img_list, text_list):
257
+ # Initialize lists to store the processed embeddings, attention masks, and targets.
258
+ wrap_embeds_list, wrap_atts_list = [], []
259
+ wrap_target_list = []
260
+
261
+ # Iterate over pairs of images and texts.
262
+ for image, text in zip(img_list, text_list):
263
+ # Convert the image to embeddings using the method `img2emb`.
264
+ img_embeds, atts_img, img_target = self.img2emb(image)
265
+
266
+ # Get the first element of the text (assuming it's a list).
267
+ text = text[0]
268
+ # Split the text into parts where `<ImageHere>` is found.
269
+ parts = text.split('<ImageHere>')
270
+
271
+ # Initialize lists to store tokens, embeddings, and attention masks for the current item.
272
+ wrap_tokens, wrap_embeds, wrap_atts = [], [], []
273
+
274
+ # Track the total length of the sequence being built.
275
+ temp_len = 0
276
+
277
+ # Get the number of images and the length of each image embedding.
278
+ image_nums, im_len = img_embeds.shape[:2]
279
+
280
+ # Process each part of the split text.
281
+ for idx, part in enumerate(parts):
282
+ # If the part is not empty, process it as text.
283
+ if len(part) > 0:
284
+ # Tokenize the text part.
285
+ part_tokens = self.lm_tokenizer(
286
+ part,
287
+ return_tensors='pt',
288
+ padding='longest').to(self.device)
289
+
290
+ # Append the token IDs, embeddings, and attention mask to their respective lists.
291
+ wrap_tokens.append(part_tokens.input_ids)
292
+ part_embeds = self.lm_model.model.embed_tokens(part_tokens.input_ids)
293
+ wrap_embeds.append(part_embeds)
294
+ wrap_atts.append(part_tokens.attention_mask)
295
+
296
+ # Update the total length of the sequence.
297
+ temp_len += part_embeds.shape[1]
298
+
299
+ # If there are more images, append the image target, embeddings, and attention mask.
300
+ if idx < image_nums:
301
+ wrap_tokens.append(img_target[idx].unsqueeze(0))
302
+ wrap_embeds.append(img_embeds[idx].unsqueeze(0))
303
+ wrap_atts.append(atts_img[idx].unsqueeze(0))
304
+
305
+ # Update the total length of the sequence.
306
+ temp_len += im_len
307
+
308
+ # Break the loop if the total length exceeds the maximum length.
309
+ if temp_len > self.max_length:
310
+ break
311
+
312
+ # Concatenate the tokens, embeddings, and attention masks.
313
+ wrap_tokens = torch.cat(wrap_tokens, dim=1)
314
+ wrap_embeds = torch.cat(wrap_embeds, dim=1)
315
+ wrap_atts = torch.cat(wrap_atts, dim=1)
316
+
317
+ # print('wrap_tokens',wrap_tokens.shape)
318
+ # print('wrap_embeds',wrap_embeds.shape)
319
+ # print('wrap_atts',wrap_atts.shape)
320
+
321
+ # Mask the targets for the tokens.
322
+ wrap_target = self.mask_user_targets(wrap_tokens).to(self.device)
323
+
324
+ # Truncate the concatenated tensors to the max length.
325
+ wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
326
+ wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
327
+ wrap_target = wrap_target[:, :self.max_length].to(self.device)
328
+
329
+ # self.print_tokens_labels(wrap_tokens, wrap_target)
330
+
331
+
332
+ # Add the processed data to the corresponding lists.
333
+ wrap_embeds_list.append(wrap_embeds)
334
+ wrap_atts_list.append(wrap_atts)
335
+ wrap_target_list.append(wrap_target)
336
+
337
+ # Concatenate all the processed data from different items.
338
+ wrap_embeds = torch.cat(wrap_embeds_list)
339
+ wrap_atts = torch.cat(wrap_atts_list)
340
+ wrap_target = torch.cat(wrap_target_list)
341
+
342
+ # Return the concatenated embeddings, attention masks, and targets.
343
+ return wrap_embeds, wrap_atts, wrap_target
344
+
345
+ def text2emb(self, text, add_special=False):
346
+
347
+ to_regress_tokens = self.lm_tokenizer(
348
+ text,
349
+ return_tensors='pt',
350
+ padding='longest').to(self.device)
351
+ to_regress_tokens.input_ids
352
+ targets = self.mask_user_targets(to_regress_tokens.input_ids)
353
+ targets = targets.to(self.device)
354
+
355
+ # self.print_tokens_labels(to_regress_tokens.input_ids, targets)
356
+
357
+ return to_regress_tokens, targets
358
+
359
+ def forward(
360
+ self,
361
+ input_ids: torch.LongTensor = None,
362
+ attention_mask: Optional[torch.Tensor] = None,
363
+ position_ids: Optional[torch.LongTensor] = None,
364
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
365
+ inputs_embeds: Optional[torch.FloatTensor] = None,
366
+ labels: Optional[torch.LongTensor] = None,
367
+ use_cache: Optional[bool] = None,
368
+ output_attentions: Optional[bool] = None,
369
+ output_hidden_states: Optional[bool] = None,
370
+ return_dict: Optional[bool] = None,
371
+ **kwargs
372
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
373
+ r"""
374
+ Args:
375
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
376
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
377
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
378
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
379
+
380
+ Returns:
381
+
382
+ ```"""
383
+ # prepared for train mode
384
+ samples = kwargs.get('samples', None)
385
+ if samples:
386
+ if samples['data_type'][0] == 'text':
387
+ has_img = False
388
+ elif samples['data_type'][0] == 'multi':
389
+ has_img = True
390
+ else:
391
+ raise NotImplementedError
392
+
393
+ # encode text
394
+ text = samples['text_input']
395
+ # encode image
396
+ if has_img:
397
+ image = samples['image']
398
+
399
+ to_regress_embeds, attention_mask, targets = self.interleav_wrap(
400
+ image, text)
401
+ else:
402
+ to_regress_tokens, targets = self.text2emb(#-------------------------------------------------------------------------------------------
403
+ text, add_special=True)
404
+ to_regress_embeds = self.lm_model.model.embed_tokens(#-------------------------------------------------------------------------------------------
405
+ to_regress_tokens.input_ids)
406
+ attention_mask = to_regress_tokens.attention_mask
407
+
408
+ inputs_embeds = to_regress_embeds[:, :self.max_length]
409
+ attention_mask = attention_mask[:, :self.max_length]
410
+ targets = targets[:, :self.max_length]
411
+ labels = targets
412
+
413
+
414
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
415
+ output_hidden_states = (
416
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
417
+ )
418
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
419
+
420
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
421
+ outputs = self.lm_model.model(
422
+ input_ids=input_ids,
423
+ attention_mask=attention_mask,
424
+ position_ids=position_ids,
425
+ past_key_values=past_key_values,
426
+ inputs_embeds=inputs_embeds,
427
+ use_cache=use_cache,
428
+ output_attentions=output_attentions,
429
+ output_hidden_states=output_hidden_states,
430
+ return_dict=return_dict,
431
+ )
432
+
433
+ hidden_states = outputs[0]
434
+ logits = self.lm_model.lm_head(hidden_states)
435
+ logits = logits.float()
436
+
437
+ loss = None
438
+ if labels is not None:
439
+ # Shift so that tokens < n predict n
440
+ shift_logits = logits[..., :-1, :].contiguous()
441
+ shift_labels = labels[..., 1:].contiguous()
442
+ # Flatten the tokens
443
+ loss_fct = CrossEntropyLoss()
444
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
445
+ shift_labels = shift_labels.view(-1)
446
+ # Enable model parallelism
447
+ shift_labels = shift_labels.to(shift_logits.device)
448
+ loss = loss_fct(shift_logits, shift_labels)
449
+
450
+ if not return_dict:
451
+ output = (logits,) + outputs[1:]
452
+ return (loss,) + output if loss is not None else output
453
+
454
+ return CausalLMOutputWithPast(
455
+ loss=loss,
456
+ logits=logits,
457
+ past_key_values=outputs.past_key_values,
458
+ hidden_states=outputs.hidden_states,
459
+ attentions=outputs.attentions,
460
+ )
461
+
462
+ @torch.no_grad()
463
+ def chat(
464
+ self,
465
+ messages,
466
+ images: List[str] = None,
467
+ streamer: Optional[BaseStreamer] = None,
468
+ max_new_tokens: int = 1024,
469
+ do_sample: bool = True,
470
+ num_beams: int = 1,
471
+ temperature: float = 1.0,
472
+ top_p: float = 0.8,
473
+ repetition_penalty: float=1.005,
474
+ **kwargs,
475
+ ):
476
+ if images!=[]:
477
+ print('images ',images)
478
+ image_pt=self.get_tensor_image(images)
479
+ else:
480
+ image_pt=None
481
+ inputs=self.interleav_wrap_chat(messages,image_pt)
482
+
483
+ inputs = {
484
+ k: v.to(self.device)
485
+ for k, v in inputs.items() if torch.is_tensor(v)
486
+ }
487
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
488
+ eos_token_id = [
489
+ self.eos_token_id
490
+ ]
491
+ outputs = self.lm_model.generate(
492
+ **inputs,
493
+ streamer=streamer,
494
+ max_new_tokens=max_new_tokens,
495
+ num_beams=num_beams,
496
+ do_sample=do_sample,
497
+ temperature=temperature,
498
+ top_p=top_p,
499
+ eos_token_id=eos_token_id,
500
+ repetition_penalty=repetition_penalty,
501
+ **kwargs,
502
+ )
503
+
504
+ response = self.lm_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
505
+ messages+=[{"role": "assistant", "content": response}]
506
+
507
+ return response, messages
508
+
509
+
510
+
511
+
512
+
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|endoftext|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b31d1f19850dd4d60172d22b93ed93f1986f7ca07edf7291521197e6fda401bd
3
+ size 6392
vocab.json ADDED
The diff for this file is too large to render. See raw diff