Upload 17 files
Browse files- Vision_Project.py +35 -0
- Vision_Tower.py +169 -0
- added_tokens.json +5 -0
- config.json +44 -0
- configuration_mcmd.py +15 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +869 -0
- modeling_mcmd.py +512 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +43 -0
- training_args.bin +3 -0
- vocab.json +0 -0
Vision_Project.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
class IdentityMap(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
def forward(self, x, *args, **kwargs):
|
12 |
+
return x
|
13 |
+
|
14 |
+
@property
|
15 |
+
def config(self):
|
16 |
+
return {'mm_projector_type': 'identity'}
|
17 |
+
|
18 |
+
def mlp2x_gelu(projector_type):
|
19 |
+
# mm_hidden_size = 1024
|
20 |
+
mm_hidden_size = 1280
|
21 |
+
hidden_size = 3584
|
22 |
+
|
23 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
24 |
+
if mlp_gelu_match:
|
25 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
26 |
+
modules = [nn.Linear(mm_hidden_size, hidden_size)]
|
27 |
+
for _ in range(1, mlp_depth):
|
28 |
+
modules.append(nn.GELU())
|
29 |
+
modules.append(nn.Linear(hidden_size, hidden_size))
|
30 |
+
return nn.Sequential(*modules)
|
31 |
+
|
32 |
+
if projector_type == 'identity':
|
33 |
+
return IdentityMap()
|
34 |
+
|
35 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
Vision_Tower.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import CLIPVisionModel
|
4 |
+
|
5 |
+
|
6 |
+
class clip_vit_large_patch14_336(nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, vision_tower, use_resize_pos=True):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.is_loaded = False
|
12 |
+
self.is_resize_pos = False
|
13 |
+
|
14 |
+
self.vision_tower_name = vision_tower
|
15 |
+
self.select_layer = -1
|
16 |
+
self.select_feature = 'patch'
|
17 |
+
self.load_model()
|
18 |
+
|
19 |
+
#change model to input shape[490*490]
|
20 |
+
if use_resize_pos:
|
21 |
+
self.resize_pos()
|
22 |
+
|
23 |
+
def load_model(self):
|
24 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
25 |
+
self.vision_tower_name)
|
26 |
+
self.vision_tower.requires_grad_(False)
|
27 |
+
|
28 |
+
self.is_loaded = True
|
29 |
+
|
30 |
+
def resize_pos(self):
|
31 |
+
pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
|
32 |
+
pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
|
33 |
+
orig_size = 24 #336/14
|
34 |
+
new_size = 35 #490/14
|
35 |
+
|
36 |
+
if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
|
37 |
+
self.is_resize_pos = True
|
38 |
+
else:
|
39 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
40 |
+
num_extra_tokens = 1
|
41 |
+
new_num = new_size**2 + num_extra_tokens
|
42 |
+
#print('Position interpolate from %dx%d to %dx%d' %
|
43 |
+
# (orig_size, orig_size, new_size, new_size))
|
44 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
45 |
+
# only the position tokens are interpolated
|
46 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
47 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
|
48 |
+
embedding_size).permute(
|
49 |
+
0, 3, 1, 2)
|
50 |
+
pos_tokens = torch.nn.functional.interpolate(
|
51 |
+
pos_tokens,
|
52 |
+
size=(new_size, new_size),
|
53 |
+
mode='bicubic',
|
54 |
+
align_corners=False)
|
55 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
56 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
57 |
+
|
58 |
+
new_pos_embed = new_pos_embed.squeeze(0)
|
59 |
+
|
60 |
+
self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
|
61 |
+
new_num, 1024)
|
62 |
+
self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
|
63 |
+
new_pos_embed.to(pos_embed_checkpoint.dtype))
|
64 |
+
self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
|
65 |
+
new_num).expand((1, -1))
|
66 |
+
|
67 |
+
self.is_resize_pos = True
|
68 |
+
|
69 |
+
def feature_select(self, image_forward_outs):
|
70 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
71 |
+
if self.select_feature == 'patch':
|
72 |
+
image_features = image_features[:, 1:]
|
73 |
+
elif self.select_feature == 'cls_patch':
|
74 |
+
image_features = image_features
|
75 |
+
else:
|
76 |
+
raise ValueError(
|
77 |
+
f'Unexpected select feature: {self.select_feature}')
|
78 |
+
return image_features
|
79 |
+
|
80 |
+
def forward(self, images):
|
81 |
+
if not self.is_loaded:
|
82 |
+
self.load_model()
|
83 |
+
if type(images) is list: # not batch infurence speed!
|
84 |
+
image_features = []
|
85 |
+
for image in images:
|
86 |
+
image_forward_out = self.vision_tower(
|
87 |
+
image.to(device=self.device,
|
88 |
+
dtype=self.dtype).unsqueeze(0),
|
89 |
+
output_hidden_states=True)
|
90 |
+
image_feature = self.feature_select(image_forward_out).to(
|
91 |
+
image.dtype)
|
92 |
+
image_features.append(image_feature)
|
93 |
+
else:
|
94 |
+
image_forward_outs = self.vision_tower(
|
95 |
+
images.to(device=self.device, dtype=self.dtype),
|
96 |
+
output_hidden_states=True)
|
97 |
+
image_features = self.feature_select(image_forward_outs).to(
|
98 |
+
images.dtype)
|
99 |
+
|
100 |
+
return image_features
|
101 |
+
|
102 |
+
@property
|
103 |
+
def device(self):
|
104 |
+
return self.vision_tower.device
|
105 |
+
|
106 |
+
@property
|
107 |
+
def dtype(self):
|
108 |
+
return self.vision_tower.dtype
|
109 |
+
|
110 |
+
class DFN5B_CLIP_ViT_H_14_378(nn.Module):
|
111 |
+
|
112 |
+
def __init__(self, vision_tower):
|
113 |
+
super().__init__()
|
114 |
+
|
115 |
+
self.is_loaded = False
|
116 |
+
self.is_resize_pos = False
|
117 |
+
|
118 |
+
self.vision_tower_name = vision_tower
|
119 |
+
self.select_layer = -1
|
120 |
+
self.select_feature = 'patch'
|
121 |
+
self.load_model()
|
122 |
+
|
123 |
+
def load_model(self):
|
124 |
+
self.vision_tower = CLIPVisionModel.from_pretrained(
|
125 |
+
self.vision_tower_name)
|
126 |
+
self.vision_tower.requires_grad_(False)
|
127 |
+
|
128 |
+
self.is_loaded = True
|
129 |
+
|
130 |
+
def feature_select(self, image_forward_outs):
|
131 |
+
image_features = image_forward_outs.hidden_states[self.select_layer]
|
132 |
+
if self.select_feature == 'patch':
|
133 |
+
image_features = image_features[:, 1:]
|
134 |
+
elif self.select_feature == 'cls_patch':
|
135 |
+
image_features = image_features
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
f'Unexpected select feature: {self.select_feature}')
|
139 |
+
return image_features
|
140 |
+
|
141 |
+
def forward(self, images):
|
142 |
+
if not self.is_loaded:
|
143 |
+
self.load_model()
|
144 |
+
if type(images) is list: # not batch infurence speed!
|
145 |
+
image_features = []
|
146 |
+
for image in images:
|
147 |
+
image_forward_out = self.vision_tower(
|
148 |
+
image.to(device=self.device,
|
149 |
+
dtype=self.dtype).unsqueeze(0),
|
150 |
+
output_hidden_states=True)
|
151 |
+
image_feature = self.feature_select(image_forward_out).to(
|
152 |
+
image.dtype)
|
153 |
+
image_features.append(image_feature)
|
154 |
+
else:
|
155 |
+
image_forward_outs = self.vision_tower(
|
156 |
+
images.to(device=self.device, dtype=self.dtype),
|
157 |
+
output_hidden_states=True)
|
158 |
+
image_features = self.feature_select(image_forward_outs).to(
|
159 |
+
images.dtype)
|
160 |
+
|
161 |
+
return image_features
|
162 |
+
|
163 |
+
@property
|
164 |
+
def device(self):
|
165 |
+
return self.vision_tower.device
|
166 |
+
|
167 |
+
@property
|
168 |
+
def dtype(self):
|
169 |
+
return self.vision_tower.dtype
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/lwt/tech/mcmd",
|
3 |
+
"architectures": [
|
4 |
+
"mcmdForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_mcmd.mcmdConfig",
|
8 |
+
"AutoModel": "modeling_mcmd.mcmdForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_mcmd.mcmdForCausalLM"
|
10 |
+
},
|
11 |
+
"clip_path": "/root/LWT/Models/DFN5B-CLIP-ViT-H-14-378",
|
12 |
+
"input_img_size": 378,
|
13 |
+
"lm_model": {
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"bos_token_id": 151643,
|
16 |
+
"eos_token_id": 151645,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 3584,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 18944,
|
21 |
+
"max_position_embeddings": 32768,
|
22 |
+
"max_window_layers": 28,
|
23 |
+
"model_type": "qwen2",
|
24 |
+
"num_attention_heads": 28,
|
25 |
+
"num_hidden_layers": 28,
|
26 |
+
"num_key_value_heads": 4,
|
27 |
+
"rms_norm_eps": 1e-06,
|
28 |
+
"rope_theta": 1000000.0,
|
29 |
+
"sliding_window": 131072,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.41.2",
|
33 |
+
"use_cache": true,
|
34 |
+
"use_sliding_window": false,
|
35 |
+
"vocab_size": 152064
|
36 |
+
},
|
37 |
+
"lm_path": "/root/LWT/Models/Qwen2-7B-Instruct",
|
38 |
+
"max_length": 4096,
|
39 |
+
"model_type": "mcmd",
|
40 |
+
"torch_dtype": "bfloat16",
|
41 |
+
"transformers_version": "4.40.0",
|
42 |
+
"vision_config": "mlp2x_gelu",
|
43 |
+
"vocab_size": 152064
|
44 |
+
}
|
configuration_mcmd.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
|
4 |
+
class mcmdConfig(PretrainedConfig):
|
5 |
+
|
6 |
+
model_type = "mcmd"
|
7 |
+
_auto_class = "AutoConfig"
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
**kwargs,
|
12 |
+
):
|
13 |
+
super().__init__(
|
14 |
+
**kwargs,
|
15 |
+
)
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47d9572190896617f2a8d3260ef421608c8dfd4de20941fa747bc3539a8099d2
|
3 |
+
size 4877661712
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a14fb3d73d667f9e9ae1e842cad95d0e744e30e293df64be2e82de0fbc50ce1
|
3 |
+
size 4932752112
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efe22d5e53941a70effa8c5333a62e9febb60e3356cebf6cb8dafd465cbcca4d
|
3 |
+
size 4330866208
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:905adcc732723412112b06f2ffa551bd8d9c21a757552c4188b3ee337b29e80b
|
3 |
+
size 2387691576
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,869 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16528855552
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_model.lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"lm_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"lm_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"lm_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"lm_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"lm_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"lm_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"lm_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"lm_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"lm_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"lm_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"lm_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"lm_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"lm_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"lm_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"lm_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"lm_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"lm_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"lm_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"lm_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"lm_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"lm_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"lm_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"lm_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"lm_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"lm_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"lm_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"lm_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"lm_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"lm_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"lm_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"lm_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"lm_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"lm_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"lm_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"lm_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"lm_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"lm_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"lm_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"lm_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"lm_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"lm_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"lm_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"lm_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"lm_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"lm_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"lm_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"lm_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"lm_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"lm_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"lm_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"lm_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"lm_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"lm_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"lm_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"lm_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"lm_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"lm_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"lm_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"lm_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"lm_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"lm_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"lm_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"lm_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"lm_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"lm_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"lm_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"lm_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"lm_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"lm_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"lm_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"lm_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"lm_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"lm_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"lm_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"lm_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"lm_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"lm_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"lm_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"lm_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"lm_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"lm_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"lm_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"lm_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"lm_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"lm_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"lm_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"lm_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"lm_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"lm_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"lm_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"lm_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"lm_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"lm_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"lm_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"lm_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"lm_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"lm_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"lm_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"lm_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"lm_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"lm_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"lm_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"lm_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"lm_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"lm_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"lm_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"lm_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"lm_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"lm_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"lm_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"lm_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"lm_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"lm_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"lm_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"lm_model.model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"lm_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"lm_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"lm_model.model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"lm_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"lm_model.model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"lm_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"lm_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"lm_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"lm_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"lm_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"lm_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"lm_model.model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"lm_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"lm_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"lm_model.model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"lm_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"lm_model.model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"lm_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"lm_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"lm_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"lm_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"lm_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"lm_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"lm_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"lm_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"lm_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"lm_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"lm_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"lm_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"lm_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"lm_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"lm_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"lm_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"lm_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"lm_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"lm_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"lm_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"lm_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"lm_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"lm_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"lm_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"lm_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"lm_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"lm_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"lm_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"lm_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"lm_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"lm_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"lm_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"lm_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"lm_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"lm_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"lm_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"lm_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"lm_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"lm_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"lm_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"lm_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"lm_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"lm_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"lm_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"lm_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"lm_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"lm_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"lm_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"lm_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"lm_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"lm_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"lm_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"lm_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"lm_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"lm_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"lm_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"lm_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"lm_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"lm_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"lm_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"lm_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"lm_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"lm_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"lm_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"lm_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"lm_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"lm_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"lm_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"lm_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"lm_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"lm_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"lm_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"lm_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"lm_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"lm_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"lm_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"lm_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"lm_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"lm_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"lm_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"lm_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"lm_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"lm_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"lm_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"lm_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"lm_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"lm_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"lm_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"lm_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"lm_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"lm_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"lm_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"lm_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"lm_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"lm_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"lm_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"lm_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"lm_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"lm_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"lm_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"lm_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"lm_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"lm_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"lm_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"lm_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"lm_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"lm_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"lm_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"lm_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"lm_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"lm_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"lm_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"lm_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"lm_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"lm_model.model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"lm_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"lm_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"lm_model.model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"lm_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"lm_model.model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"lm_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"lm_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"lm_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"lm_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"lm_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"lm_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"lm_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"lm_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"lm_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"lm_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"lm_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"lm_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"lm_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"lm_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"lm_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"lm_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"lm_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"lm_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"lm_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"lm_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"lm_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"lm_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"lm_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"lm_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"lm_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"lm_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"lm_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"lm_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"lm_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"lm_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"lm_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"lm_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"lm_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"lm_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"lm_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"lm_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"lm_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"lm_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"lm_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"lm_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"lm_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"lm_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"lm_model.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"lm_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"lm_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"lm_model.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"lm_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"lm_model.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"lm_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"lm_model.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"lm_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"lm_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"lm_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"lm_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"lm_model.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"lm_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"lm_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"lm_model.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"lm_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"lm_model.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"lm_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"lm_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"lm_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"lm_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"lm_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"lm_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"lm_model.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"lm_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"lm_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"lm_model.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"lm_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"lm_model.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"lm_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"lm_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"lm_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"lm_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"lm_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"lm_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"lm_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"lm_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"lm_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"lm_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"lm_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"lm_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"lm_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"lm_model.model.norm.weight": "model-00003-of-00004.safetensors",
|
345 |
+
"vision_proj.0.bias": "model-00004-of-00004.safetensors",
|
346 |
+
"vision_proj.0.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"vision_proj.2.bias": "model-00004-of-00004.safetensors",
|
348 |
+
"vision_proj.2.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"vit.vision_tower.vision_model.embeddings.class_embedding": "model-00004-of-00004.safetensors",
|
350 |
+
"vit.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"vit.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
352 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
353 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
354 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
355 |
+
"vit.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
356 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
357 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
358 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
359 |
+
"vit.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
360 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
361 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
362 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
363 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
364 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
365 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
366 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
367 |
+
"vit.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
368 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
369 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
371 |
+
"vit.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
372 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
373 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
375 |
+
"vit.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
376 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
377 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
378 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
379 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
380 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
381 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
382 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
383 |
+
"vit.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
384 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
385 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
386 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
387 |
+
"vit.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
388 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
389 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
390 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
391 |
+
"vit.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
392 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
393 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
394 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
395 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
396 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
397 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
398 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
399 |
+
"vit.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
400 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
401 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
402 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
403 |
+
"vit.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
404 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
405 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
406 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
407 |
+
"vit.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
408 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
409 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
410 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
411 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
412 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
413 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
414 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
415 |
+
"vit.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
416 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
417 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
418 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
419 |
+
"vit.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
420 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
421 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
422 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
423 |
+
"vit.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
424 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
425 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
426 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
427 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
428 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
429 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
430 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
431 |
+
"vit.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
432 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
433 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
434 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
435 |
+
"vit.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
436 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
437 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
438 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
439 |
+
"vit.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
440 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
441 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
442 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
443 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
444 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
445 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
446 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
447 |
+
"vit.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
448 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
449 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
450 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
451 |
+
"vit.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
452 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
453 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
454 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
455 |
+
"vit.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
456 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
457 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
458 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
459 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
460 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
461 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
462 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
463 |
+
"vit.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
464 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
465 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
466 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
467 |
+
"vit.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
468 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
469 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
470 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
471 |
+
"vit.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
472 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
473 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
474 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
475 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
476 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
477 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
478 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
479 |
+
"vit.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
480 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
481 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
482 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
483 |
+
"vit.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
484 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
485 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
486 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
487 |
+
"vit.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
488 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
489 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
490 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
491 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
492 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
493 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
494 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
495 |
+
"vit.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
496 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
497 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
498 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
499 |
+
"vit.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
500 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
501 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
502 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
503 |
+
"vit.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
504 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
505 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
506 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
507 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
508 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
509 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
510 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
511 |
+
"vit.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
512 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
513 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
514 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
515 |
+
"vit.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
516 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
517 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
518 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
519 |
+
"vit.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
520 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
521 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
522 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
523 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
524 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
525 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
526 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
527 |
+
"vit.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
528 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
529 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
530 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
531 |
+
"vit.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
532 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
533 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
534 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
535 |
+
"vit.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
536 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
537 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
538 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
539 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
540 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
541 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
542 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
543 |
+
"vit.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
544 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
545 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
546 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
547 |
+
"vit.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
548 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
549 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
550 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
551 |
+
"vit.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
552 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
553 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
554 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
555 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
556 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
557 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
558 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
559 |
+
"vit.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
560 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
561 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
562 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
563 |
+
"vit.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
564 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
565 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
566 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
567 |
+
"vit.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
568 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
569 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
570 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
571 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
572 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
573 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
574 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
575 |
+
"vit.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
576 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
577 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
578 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
579 |
+
"vit.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
580 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
581 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
582 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
583 |
+
"vit.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
584 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
585 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
586 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
587 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
588 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
589 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
590 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
591 |
+
"vit.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
592 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
593 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
594 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
595 |
+
"vit.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
596 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
597 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
598 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
599 |
+
"vit.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
600 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
601 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
602 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
603 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
604 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
605 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
606 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
607 |
+
"vit.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
608 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
609 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
610 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
611 |
+
"vit.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
612 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
613 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
614 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
615 |
+
"vit.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
616 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
617 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
618 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
619 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
620 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
621 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
622 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
623 |
+
"vit.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
624 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
625 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
626 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
627 |
+
"vit.vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
628 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
629 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
630 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
631 |
+
"vit.vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
632 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
633 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
634 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
635 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
636 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
637 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
638 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
639 |
+
"vit.vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
640 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
641 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
642 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
643 |
+
"vit.vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
644 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
645 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
646 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
647 |
+
"vit.vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
648 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
649 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
650 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
651 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
652 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
653 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
654 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
655 |
+
"vit.vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
656 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
657 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
658 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
659 |
+
"vit.vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
660 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
661 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
662 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
663 |
+
"vit.vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
664 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
665 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
666 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
667 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
668 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
669 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
670 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
671 |
+
"vit.vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
672 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
673 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
674 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
675 |
+
"vit.vision_tower.vision_model.encoder.layers.27.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
676 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
677 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
678 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
679 |
+
"vit.vision_tower.vision_model.encoder.layers.27.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
680 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
681 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
682 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
683 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
684 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
685 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
686 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
687 |
+
"vit.vision_tower.vision_model.encoder.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
688 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
689 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
690 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
691 |
+
"vit.vision_tower.vision_model.encoder.layers.28.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
692 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
693 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
694 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
695 |
+
"vit.vision_tower.vision_model.encoder.layers.28.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
696 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
697 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
698 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
699 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
700 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
701 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
702 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
703 |
+
"vit.vision_tower.vision_model.encoder.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
704 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
705 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
706 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
707 |
+
"vit.vision_tower.vision_model.encoder.layers.29.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
708 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
709 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
710 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
711 |
+
"vit.vision_tower.vision_model.encoder.layers.29.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
712 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
713 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
714 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
715 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
716 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
717 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
718 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
719 |
+
"vit.vision_tower.vision_model.encoder.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
720 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
721 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
722 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
723 |
+
"vit.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
724 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
725 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
726 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
727 |
+
"vit.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
728 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
729 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
730 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
731 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
732 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
733 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
734 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
735 |
+
"vit.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
736 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
737 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
738 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
739 |
+
"vit.vision_tower.vision_model.encoder.layers.30.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
740 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
741 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
742 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
743 |
+
"vit.vision_tower.vision_model.encoder.layers.30.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
744 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
745 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
746 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
747 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
748 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
749 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
750 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
751 |
+
"vit.vision_tower.vision_model.encoder.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
752 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
753 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
754 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
755 |
+
"vit.vision_tower.vision_model.encoder.layers.31.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
756 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
757 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
758 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
759 |
+
"vit.vision_tower.vision_model.encoder.layers.31.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
760 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
761 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
762 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
763 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
764 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
765 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
766 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
767 |
+
"vit.vision_tower.vision_model.encoder.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
768 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
769 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
770 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
771 |
+
"vit.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
772 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
773 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
774 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
775 |
+
"vit.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
776 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
777 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
778 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
779 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
780 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
781 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
782 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
783 |
+
"vit.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
784 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
785 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
786 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
787 |
+
"vit.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
788 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
789 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
790 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
791 |
+
"vit.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
792 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
793 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
794 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
795 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
796 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
797 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
798 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
799 |
+
"vit.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
800 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
801 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
802 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
803 |
+
"vit.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
804 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
805 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
806 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
807 |
+
"vit.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
808 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
809 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
810 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
811 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
812 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
813 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
814 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
815 |
+
"vit.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
816 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
817 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
818 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
819 |
+
"vit.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
820 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
821 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
822 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
823 |
+
"vit.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
824 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
825 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
826 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
827 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
828 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
829 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
830 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
831 |
+
"vit.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
832 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
833 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
834 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
835 |
+
"vit.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
836 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
837 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
838 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
839 |
+
"vit.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
840 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
841 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
842 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
843 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
844 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
845 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
846 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
847 |
+
"vit.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
848 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
849 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
850 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
851 |
+
"vit.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
852 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
853 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
854 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
855 |
+
"vit.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
856 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
857 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
858 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
859 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
860 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
861 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
862 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
863 |
+
"vit.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
864 |
+
"vit.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
865 |
+
"vit.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
|
866 |
+
"vit.vision_tower.vision_model.pre_layrnorm.bias": "model-00004-of-00004.safetensors",
|
867 |
+
"vit.vision_tower.vision_model.pre_layrnorm.weight": "model-00004-of-00004.safetensors"
|
868 |
+
}
|
869 |
+
}
|
modeling_mcmd.py
ADDED
@@ -0,0 +1,512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#basic backage
|
2 |
+
import os
|
3 |
+
import copy
|
4 |
+
import warnings
|
5 |
+
from PIL import Image
|
6 |
+
from typing import Optional, Tuple, Union, List, Callable
|
7 |
+
|
8 |
+
#torch and transformer
|
9 |
+
import torch
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
from torch.distributions.categorical import Categorical
|
13 |
+
|
14 |
+
from torchvision import transforms
|
15 |
+
from torchvision.transforms.functional import InterpolationMode
|
16 |
+
|
17 |
+
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.generation.streamers import BaseStreamer
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
22 |
+
|
23 |
+
|
24 |
+
#mcmd
|
25 |
+
from .configuration_mcmd import mcmdConfig
|
26 |
+
from .Vision_Tower import clip_vit_large_patch14_336,DFN5B_CLIP_ViT_H_14_378
|
27 |
+
from .Vision_Project import mlp2x_gelu
|
28 |
+
|
29 |
+
def build_lm_model_tokenizer(lm_model_name : str, lm_tokenizer_name : str):
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
lm_model_name,
|
32 |
+
torch_dtype="auto"
|
33 |
+
)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(lm_tokenizer_name)
|
35 |
+
return model,tokenizer
|
36 |
+
|
37 |
+
def build_vision_projector(vision_config):
|
38 |
+
if vision_config=='mlp2x_gelu':
|
39 |
+
return mlp2x_gelu(vision_config)
|
40 |
+
|
41 |
+
def build_vision_tower(vision_tower_name=''):
|
42 |
+
if vision_tower_name.endswith('clip-vit-large-patch14-336'):
|
43 |
+
return clip_vit_large_patch14_336(vision_tower_name,use_resize_pos=True)
|
44 |
+
elif vision_tower_name.endswith('DFN5B-CLIP-ViT-H-14-378'):
|
45 |
+
return DFN5B_CLIP_ViT_H_14_378(vision_tower_name)
|
46 |
+
|
47 |
+
class mcmdPreTrainedModel(PreTrainedModel):
|
48 |
+
# config_class = mcmdConfig
|
49 |
+
|
50 |
+
def _init_weights(self, module):
|
51 |
+
std = self.config.initializer_range
|
52 |
+
if isinstance(module, nn.Linear):
|
53 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
54 |
+
if module.bias is not None:
|
55 |
+
module.bias.data.zero_()
|
56 |
+
elif isinstance(module, nn.Embedding):
|
57 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
58 |
+
if module.padding_idx is not None:
|
59 |
+
module.weight.data[module.padding_idx].zero_()
|
60 |
+
|
61 |
+
|
62 |
+
class mcmdForCausalLM(mcmdPreTrainedModel):
|
63 |
+
_auto_class = 'AutoModelForCausalLM'
|
64 |
+
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__(config)
|
67 |
+
|
68 |
+
#Initialize language model
|
69 |
+
self.max_length = config.max_length
|
70 |
+
self.vocab_size = config.lm_model['vocab_size']
|
71 |
+
self.lm_model,self.lm_tokenizer = build_lm_model_tokenizer(config.lm_path,config.lm_path)
|
72 |
+
|
73 |
+
#Initialize vit and vision_proj
|
74 |
+
self.vit = build_vision_tower(config.clip_path)
|
75 |
+
self.vision_proj = build_vision_projector(config.vision_config)
|
76 |
+
|
77 |
+
# Initialize vis_processor for Image Preprocessing. The mean and std is equal in dfn5b and clip-vit
|
78 |
+
self.vis_processor = transforms.Compose([
|
79 |
+
transforms.Resize((config.input_img_size, config.input_img_size),
|
80 |
+
interpolation=InterpolationMode.BICUBIC),
|
81 |
+
transforms.ToTensor(),
|
82 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
|
83 |
+
(0.26862954, 0.26130258, 0.27577711)),
|
84 |
+
])
|
85 |
+
|
86 |
+
self.eos_token_id = self.lm_tokenizer.eos_token_id # 151645 <|im_end|>
|
87 |
+
|
88 |
+
def print_trainable_parameters(self):
|
89 |
+
print('可训练参数:')
|
90 |
+
trainable_params = 0
|
91 |
+
all_param = 0
|
92 |
+
for _, param in self.named_parameters():
|
93 |
+
all_param += param.numel()
|
94 |
+
if param.requires_grad:
|
95 |
+
trainable_params += param.numel()
|
96 |
+
print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}")
|
97 |
+
|
98 |
+
print('可训练的模块:')
|
99 |
+
for name, param in self.named_parameters():
|
100 |
+
if param.requires_grad:
|
101 |
+
print(name, param.shape)
|
102 |
+
|
103 |
+
def print_model_layers_and_parameters(self):
|
104 |
+
print('模型参数:')
|
105 |
+
for name, module in self.named_modules():
|
106 |
+
if hasattr(module, 'weight'):
|
107 |
+
num_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
|
108 |
+
print(f"Layer: {name}, Type: {module.__class__.__name__}, Trainable Parameters: {num_params}")
|
109 |
+
else:
|
110 |
+
print(f"Layer: {name}, Type: {module.__class__.__name__}, No trainable parameters")
|
111 |
+
|
112 |
+
def print_tokens_labels(self, tokens: List[int], target: List[int]):
|
113 |
+
print("Sanity Check >>>>>>>>>>>>>")
|
114 |
+
temp_tokens=copy.deepcopy(tokens[0].tolist())
|
115 |
+
temp_target=copy.deepcopy(target[0].tolist())
|
116 |
+
save_name='check_token_target.txt'
|
117 |
+
if os.path.exists(save_name):
|
118 |
+
os.remove(save_name)
|
119 |
+
ff = open(save_name,'a+')
|
120 |
+
for t, m in zip(temp_tokens, temp_target):
|
121 |
+
if t<0:
|
122 |
+
decoded='<Image Data>'
|
123 |
+
else:
|
124 |
+
decoded = self.lm_tokenizer.batch_decode([t], skip_special_tokens=False)[0]
|
125 |
+
print("%20s: %6d -> %6d" % (repr(decoded), t, m))
|
126 |
+
ff.write("%20s: %6d -> %6d\n" % (repr(decoded), t, m))
|
127 |
+
ff.close()
|
128 |
+
print("<<<<<<<<<<<<< Sanity Check")
|
129 |
+
assert len(tokens) == len(target), f"length mismatch: {len(tokens)} vs {len(target)}"
|
130 |
+
|
131 |
+
def img2emb(self, image):
|
132 |
+
image=image.bfloat16()
|
133 |
+
img_embeds = self.vision_proj(self.vit(image.to(self.device)))
|
134 |
+
atts_img = torch.ones(
|
135 |
+
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
|
136 |
+
|
137 |
+
img_target = torch.ones(
|
138 |
+
img_embeds.size()[:2], dtype=torch.long).to(
|
139 |
+
img_embeds.device) * -100
|
140 |
+
|
141 |
+
return img_embeds, atts_img, img_target
|
142 |
+
|
143 |
+
def encode_img(self, image):
|
144 |
+
if image is None:
|
145 |
+
return None
|
146 |
+
if isinstance(image, str):
|
147 |
+
image = Image.open(image).convert('RGB')
|
148 |
+
# Image Preprocessing
|
149 |
+
# unsqueeze insert 1 dim in front of 0
|
150 |
+
# image is [1, 3, 490, 490]
|
151 |
+
image = self.vis_processor(image).unsqueeze(0).to(self.device)
|
152 |
+
else:
|
153 |
+
assert isinstance(image, torch.Tensor)
|
154 |
+
|
155 |
+
img_embeds, _, _ = self.img2emb(image)
|
156 |
+
'''
|
157 |
+
img_embeds : [1, 1225, 4096] 1225?
|
158 |
+
atts_img = torch.ones([1, 1225])
|
159 |
+
img_target = torch.ones([1, 1225]) * -100
|
160 |
+
'''
|
161 |
+
return img_embeds
|
162 |
+
|
163 |
+
def get_tensor_image(self,fns):
|
164 |
+
image_data=[]
|
165 |
+
|
166 |
+
for one in fns:
|
167 |
+
t_one=self.encode_img(one)
|
168 |
+
image_data.append(t_one)
|
169 |
+
|
170 |
+
image = torch.cat(image_data, dim=0)
|
171 |
+
|
172 |
+
return image
|
173 |
+
|
174 |
+
|
175 |
+
def interleav_wrap_chat(self, messages, image):
|
176 |
+
|
177 |
+
#Deal prompt using qwen2 template, which is from transformers/tokenization_utils_base.py
|
178 |
+
prompt = self.lm_tokenizer.apply_chat_template(
|
179 |
+
messages,
|
180 |
+
tokenize=False,
|
181 |
+
add_generation_prompt=True
|
182 |
+
)
|
183 |
+
'''
|
184 |
+
repr(prompt) add_generation_prompt=True : '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n<|im_start|>assistant\n'
|
185 |
+
repr(prompt) add_generation_prompt=False: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n'
|
186 |
+
'''
|
187 |
+
|
188 |
+
if image is None:
|
189 |
+
im_len=0
|
190 |
+
image_nums=0
|
191 |
+
parts = prompt.split('<ImageHere>')
|
192 |
+
print(prompt.split('<ImageHere>'))
|
193 |
+
assert len(prompt.split('<ImageHere>'))==1
|
194 |
+
else:
|
195 |
+
im_len = image.shape[1] #1225 730
|
196 |
+
image_nums = len(image)
|
197 |
+
parts = prompt.split('<ImageHere>')
|
198 |
+
wrap_embeds = []
|
199 |
+
temp_len = 0
|
200 |
+
|
201 |
+
if len(parts) != image_nums + 1:
|
202 |
+
raise ValueError('Invalid <ImageHere> prompt format.')
|
203 |
+
|
204 |
+
for idx, part in enumerate(parts):
|
205 |
+
if len(part) > 0:
|
206 |
+
part_tokens = self.lm_tokenizer(part, return_tensors='pt').to(self.device)
|
207 |
+
part_embeds = self.lm_model.model.embed_tokens(
|
208 |
+
part_tokens.input_ids)
|
209 |
+
wrap_embeds.append(part_embeds)
|
210 |
+
|
211 |
+
temp_len += part_embeds.shape[1]
|
212 |
+
if idx < image_nums:
|
213 |
+
wrap_embeds.append(image[idx].unsqueeze(0))
|
214 |
+
temp_len += im_len
|
215 |
+
|
216 |
+
if temp_len > self.max_length:
|
217 |
+
break
|
218 |
+
|
219 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1) #torch.Size([1, 2481, 3584])
|
220 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
221 |
+
|
222 |
+
inputs = {
|
223 |
+
'inputs_embeds': wrap_embeds
|
224 |
+
}
|
225 |
+
return inputs
|
226 |
+
|
227 |
+
def mask_user_targets(self, input_ids):
|
228 |
+
target_batch = []
|
229 |
+
for bs in range(input_ids.shape[0]):
|
230 |
+
ids = input_ids[bs]
|
231 |
+
targets = copy.deepcopy(ids)
|
232 |
+
im_round=0
|
233 |
+
id_im_start=0
|
234 |
+
# id_im_end=0
|
235 |
+
for i, temp_id in enumerate(ids):
|
236 |
+
if temp_id == 151644:
|
237 |
+
im_round+=1
|
238 |
+
if im_round==2:
|
239 |
+
id_im_start=0
|
240 |
+
targets[id_im_start:i + 1] = -100
|
241 |
+
id_im_start=i
|
242 |
+
elif im_round%2==0:
|
243 |
+
id_im_start=i
|
244 |
+
elif im_round%2==1:
|
245 |
+
targets[id_im_start:i + 3] = -100
|
246 |
+
# if temp_id == 151645:
|
247 |
+
# if im_round==1:
|
248 |
+
# id_im_end=i
|
249 |
+
|
250 |
+
|
251 |
+
target_batch.append(targets.unsqueeze(0))
|
252 |
+
|
253 |
+
target_batch = torch.cat(target_batch, dim=0)
|
254 |
+
return target_batch
|
255 |
+
|
256 |
+
def interleav_wrap(self, img_list, text_list):
|
257 |
+
# Initialize lists to store the processed embeddings, attention masks, and targets.
|
258 |
+
wrap_embeds_list, wrap_atts_list = [], []
|
259 |
+
wrap_target_list = []
|
260 |
+
|
261 |
+
# Iterate over pairs of images and texts.
|
262 |
+
for image, text in zip(img_list, text_list):
|
263 |
+
# Convert the image to embeddings using the method `img2emb`.
|
264 |
+
img_embeds, atts_img, img_target = self.img2emb(image)
|
265 |
+
|
266 |
+
# Get the first element of the text (assuming it's a list).
|
267 |
+
text = text[0]
|
268 |
+
# Split the text into parts where `<ImageHere>` is found.
|
269 |
+
parts = text.split('<ImageHere>')
|
270 |
+
|
271 |
+
# Initialize lists to store tokens, embeddings, and attention masks for the current item.
|
272 |
+
wrap_tokens, wrap_embeds, wrap_atts = [], [], []
|
273 |
+
|
274 |
+
# Track the total length of the sequence being built.
|
275 |
+
temp_len = 0
|
276 |
+
|
277 |
+
# Get the number of images and the length of each image embedding.
|
278 |
+
image_nums, im_len = img_embeds.shape[:2]
|
279 |
+
|
280 |
+
# Process each part of the split text.
|
281 |
+
for idx, part in enumerate(parts):
|
282 |
+
# If the part is not empty, process it as text.
|
283 |
+
if len(part) > 0:
|
284 |
+
# Tokenize the text part.
|
285 |
+
part_tokens = self.lm_tokenizer(
|
286 |
+
part,
|
287 |
+
return_tensors='pt',
|
288 |
+
padding='longest').to(self.device)
|
289 |
+
|
290 |
+
# Append the token IDs, embeddings, and attention mask to their respective lists.
|
291 |
+
wrap_tokens.append(part_tokens.input_ids)
|
292 |
+
part_embeds = self.lm_model.model.embed_tokens(part_tokens.input_ids)
|
293 |
+
wrap_embeds.append(part_embeds)
|
294 |
+
wrap_atts.append(part_tokens.attention_mask)
|
295 |
+
|
296 |
+
# Update the total length of the sequence.
|
297 |
+
temp_len += part_embeds.shape[1]
|
298 |
+
|
299 |
+
# If there are more images, append the image target, embeddings, and attention mask.
|
300 |
+
if idx < image_nums:
|
301 |
+
wrap_tokens.append(img_target[idx].unsqueeze(0))
|
302 |
+
wrap_embeds.append(img_embeds[idx].unsqueeze(0))
|
303 |
+
wrap_atts.append(atts_img[idx].unsqueeze(0))
|
304 |
+
|
305 |
+
# Update the total length of the sequence.
|
306 |
+
temp_len += im_len
|
307 |
+
|
308 |
+
# Break the loop if the total length exceeds the maximum length.
|
309 |
+
if temp_len > self.max_length:
|
310 |
+
break
|
311 |
+
|
312 |
+
# Concatenate the tokens, embeddings, and attention masks.
|
313 |
+
wrap_tokens = torch.cat(wrap_tokens, dim=1)
|
314 |
+
wrap_embeds = torch.cat(wrap_embeds, dim=1)
|
315 |
+
wrap_atts = torch.cat(wrap_atts, dim=1)
|
316 |
+
|
317 |
+
# print('wrap_tokens',wrap_tokens.shape)
|
318 |
+
# print('wrap_embeds',wrap_embeds.shape)
|
319 |
+
# print('wrap_atts',wrap_atts.shape)
|
320 |
+
|
321 |
+
# Mask the targets for the tokens.
|
322 |
+
wrap_target = self.mask_user_targets(wrap_tokens).to(self.device)
|
323 |
+
|
324 |
+
# Truncate the concatenated tensors to the max length.
|
325 |
+
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
|
326 |
+
wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
|
327 |
+
wrap_target = wrap_target[:, :self.max_length].to(self.device)
|
328 |
+
|
329 |
+
# self.print_tokens_labels(wrap_tokens, wrap_target)
|
330 |
+
|
331 |
+
|
332 |
+
# Add the processed data to the corresponding lists.
|
333 |
+
wrap_embeds_list.append(wrap_embeds)
|
334 |
+
wrap_atts_list.append(wrap_atts)
|
335 |
+
wrap_target_list.append(wrap_target)
|
336 |
+
|
337 |
+
# Concatenate all the processed data from different items.
|
338 |
+
wrap_embeds = torch.cat(wrap_embeds_list)
|
339 |
+
wrap_atts = torch.cat(wrap_atts_list)
|
340 |
+
wrap_target = torch.cat(wrap_target_list)
|
341 |
+
|
342 |
+
# Return the concatenated embeddings, attention masks, and targets.
|
343 |
+
return wrap_embeds, wrap_atts, wrap_target
|
344 |
+
|
345 |
+
def text2emb(self, text, add_special=False):
|
346 |
+
|
347 |
+
to_regress_tokens = self.lm_tokenizer(
|
348 |
+
text,
|
349 |
+
return_tensors='pt',
|
350 |
+
padding='longest').to(self.device)
|
351 |
+
to_regress_tokens.input_ids
|
352 |
+
targets = self.mask_user_targets(to_regress_tokens.input_ids)
|
353 |
+
targets = targets.to(self.device)
|
354 |
+
|
355 |
+
# self.print_tokens_labels(to_regress_tokens.input_ids, targets)
|
356 |
+
|
357 |
+
return to_regress_tokens, targets
|
358 |
+
|
359 |
+
def forward(
|
360 |
+
self,
|
361 |
+
input_ids: torch.LongTensor = None,
|
362 |
+
attention_mask: Optional[torch.Tensor] = None,
|
363 |
+
position_ids: Optional[torch.LongTensor] = None,
|
364 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
365 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
366 |
+
labels: Optional[torch.LongTensor] = None,
|
367 |
+
use_cache: Optional[bool] = None,
|
368 |
+
output_attentions: Optional[bool] = None,
|
369 |
+
output_hidden_states: Optional[bool] = None,
|
370 |
+
return_dict: Optional[bool] = None,
|
371 |
+
**kwargs
|
372 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
373 |
+
r"""
|
374 |
+
Args:
|
375 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
376 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
377 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
378 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
379 |
+
|
380 |
+
Returns:
|
381 |
+
|
382 |
+
```"""
|
383 |
+
# prepared for train mode
|
384 |
+
samples = kwargs.get('samples', None)
|
385 |
+
if samples:
|
386 |
+
if samples['data_type'][0] == 'text':
|
387 |
+
has_img = False
|
388 |
+
elif samples['data_type'][0] == 'multi':
|
389 |
+
has_img = True
|
390 |
+
else:
|
391 |
+
raise NotImplementedError
|
392 |
+
|
393 |
+
# encode text
|
394 |
+
text = samples['text_input']
|
395 |
+
# encode image
|
396 |
+
if has_img:
|
397 |
+
image = samples['image']
|
398 |
+
|
399 |
+
to_regress_embeds, attention_mask, targets = self.interleav_wrap(
|
400 |
+
image, text)
|
401 |
+
else:
|
402 |
+
to_regress_tokens, targets = self.text2emb(#-------------------------------------------------------------------------------------------
|
403 |
+
text, add_special=True)
|
404 |
+
to_regress_embeds = self.lm_model.model.embed_tokens(#-------------------------------------------------------------------------------------------
|
405 |
+
to_regress_tokens.input_ids)
|
406 |
+
attention_mask = to_regress_tokens.attention_mask
|
407 |
+
|
408 |
+
inputs_embeds = to_regress_embeds[:, :self.max_length]
|
409 |
+
attention_mask = attention_mask[:, :self.max_length]
|
410 |
+
targets = targets[:, :self.max_length]
|
411 |
+
labels = targets
|
412 |
+
|
413 |
+
|
414 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
415 |
+
output_hidden_states = (
|
416 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
417 |
+
)
|
418 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
419 |
+
|
420 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
421 |
+
outputs = self.lm_model.model(
|
422 |
+
input_ids=input_ids,
|
423 |
+
attention_mask=attention_mask,
|
424 |
+
position_ids=position_ids,
|
425 |
+
past_key_values=past_key_values,
|
426 |
+
inputs_embeds=inputs_embeds,
|
427 |
+
use_cache=use_cache,
|
428 |
+
output_attentions=output_attentions,
|
429 |
+
output_hidden_states=output_hidden_states,
|
430 |
+
return_dict=return_dict,
|
431 |
+
)
|
432 |
+
|
433 |
+
hidden_states = outputs[0]
|
434 |
+
logits = self.lm_model.lm_head(hidden_states)
|
435 |
+
logits = logits.float()
|
436 |
+
|
437 |
+
loss = None
|
438 |
+
if labels is not None:
|
439 |
+
# Shift so that tokens < n predict n
|
440 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
441 |
+
shift_labels = labels[..., 1:].contiguous()
|
442 |
+
# Flatten the tokens
|
443 |
+
loss_fct = CrossEntropyLoss()
|
444 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
445 |
+
shift_labels = shift_labels.view(-1)
|
446 |
+
# Enable model parallelism
|
447 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
448 |
+
loss = loss_fct(shift_logits, shift_labels)
|
449 |
+
|
450 |
+
if not return_dict:
|
451 |
+
output = (logits,) + outputs[1:]
|
452 |
+
return (loss,) + output if loss is not None else output
|
453 |
+
|
454 |
+
return CausalLMOutputWithPast(
|
455 |
+
loss=loss,
|
456 |
+
logits=logits,
|
457 |
+
past_key_values=outputs.past_key_values,
|
458 |
+
hidden_states=outputs.hidden_states,
|
459 |
+
attentions=outputs.attentions,
|
460 |
+
)
|
461 |
+
|
462 |
+
@torch.no_grad()
|
463 |
+
def chat(
|
464 |
+
self,
|
465 |
+
messages,
|
466 |
+
images: List[str] = None,
|
467 |
+
streamer: Optional[BaseStreamer] = None,
|
468 |
+
max_new_tokens: int = 1024,
|
469 |
+
do_sample: bool = True,
|
470 |
+
num_beams: int = 1,
|
471 |
+
temperature: float = 1.0,
|
472 |
+
top_p: float = 0.8,
|
473 |
+
repetition_penalty: float=1.005,
|
474 |
+
**kwargs,
|
475 |
+
):
|
476 |
+
if images!=[]:
|
477 |
+
print('images ',images)
|
478 |
+
image_pt=self.get_tensor_image(images)
|
479 |
+
else:
|
480 |
+
image_pt=None
|
481 |
+
inputs=self.interleav_wrap_chat(messages,image_pt)
|
482 |
+
|
483 |
+
inputs = {
|
484 |
+
k: v.to(self.device)
|
485 |
+
for k, v in inputs.items() if torch.is_tensor(v)
|
486 |
+
}
|
487 |
+
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
488 |
+
eos_token_id = [
|
489 |
+
self.eos_token_id
|
490 |
+
]
|
491 |
+
outputs = self.lm_model.generate(
|
492 |
+
**inputs,
|
493 |
+
streamer=streamer,
|
494 |
+
max_new_tokens=max_new_tokens,
|
495 |
+
num_beams=num_beams,
|
496 |
+
do_sample=do_sample,
|
497 |
+
temperature=temperature,
|
498 |
+
top_p=top_p,
|
499 |
+
eos_token_id=eos_token_id,
|
500 |
+
repetition_penalty=repetition_penalty,
|
501 |
+
**kwargs,
|
502 |
+
)
|
503 |
+
|
504 |
+
response = self.lm_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
505 |
+
messages+=[{"role": "assistant", "content": response}]
|
506 |
+
|
507 |
+
return response, messages
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 131072,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"split_special_tokens": false,
|
41 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
42 |
+
"unk_token": null
|
43 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b31d1f19850dd4d60172d22b93ed93f1986f7ca07edf7291521197e6fda401bd
|
3 |
+
size 6392
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|