File size: 4,465 Bytes
1aa0e8e fb042dc 1aa0e8e fb042dc 1aa0e8e fb042dc 1aa0e8e fb042dc 1aa0e8e fb042dc 1aa0e8e fb042dc 1aa0e8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- type: precision
value: 0.9316493313521546
name: Precision
- type: recall
value: 0.9496802423426456
name: Recall
- type: f1
value: 0.9405783815317944
name: F1
- type: accuracy
value: 0.9861806087007712
name: Accuracy
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: test
metrics:
- type: accuracy
value: 0.8996864215817588
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWJkMzFiYTc0YzI3MGRiOGQ0MTA0OTgwYmQ3ODU2ZTk5MGQ5NGQwYjViMzhiZWFjNzUyMmYxM2QxOTQ5ZTI0MyIsInZlcnNpb24iOjF9.SECjYrUHXW-IJZPqjPMM15PAItaCHQKynFjkmu3cXj2wvUh-O_mvAvaqq3fLJSyNQfPyImRc89_gusSsgGD8Aw
- type: precision
value: 0.9290522347872914
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTdhNzkwYTMzYzE0NzdkNzc0ODQ4NmYwNTVjOGI1ZGQ3YmZlNmJjNzEwNDFiOWZiMGMxYTM1YTIxNGVkMTc2NyIsInZlcnNpb24iOjF9.imy5h8_PQmOLSWZx341f_VdLqaXSUfgmnvBtq8r5l-tc9BbzUqdl5TiyxLyqOt0JFO0lQooirG1YxivynmesBw
- type: recall
value: 0.9153430381006068
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzY5M2E3ZDc4NWFkNGFkOWY1Mzk3YzIyYzg0Y2U0NzM1ZWRkNjczM2QyODdkMTg5MDhlZDMwOThhMTA3NGFlYSIsInZlcnNpb24iOjF9.8aVjcW3T8W4a9LiEAgakRM_kechC9xK51nAl3SxypmES6MNxVjsYCD8wvxPF7ddgmTCB0vyCTeelgT6HuGhtCQ
- type: auc
value: NaN
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmQ0ZTk4ZWJmNmU4M2U1OTNiZGMyNmNmYmJmMzMwZjQ4MDRlYmYxOWJjNTM0N2FjMWExNGI1ZTVmN2I2MGZhOSIsInZlcnNpb24iOjF9.0B6-aHCUx_SdHfSTlcXlVh8mE3gQe7L2Dk2-RyLp7a3YUzOhJNAj--Bz0I5lGH0m7PffPwBuZpccdnFJfg_WAg
- type: f1
value: 0.9221466869331375
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDk1ZWY1MTVhYTZmYzNhYmZkNjdiNjNjMTk0OGMzNzQzMmE0MGI4NTc5YmViZTg3NDQ2MjE1YzNkZDUwZTc4NSIsInZlcnNpb24iOjF9.ZlDFXSg8DZL3KLeU3liwZYWgpF1wrTieUYTVg9lVkgYb7A5jlCcgT4X3LqXCScaIt84BS_6-eqNHV_ukJiUUAQ
- type: loss
value: 0.8573787212371826
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjY0OWJmZWI5ZTA5ODIzYzE5YmFkZmQ2OTIwOTJlNDU4ZmUyZDFlYTU1MmRjODRlMWZlMmMyYjUwNmQyYzhmNCIsInZlcnNpb24iOjF9.mCnEvOsb3-HlTzhiY7kboe1rCD8ikdyKgEPMixST1qbGoTmfff0ZclZL9Sjz46MREnLYNgPr_whSEzvMWC3aAw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0630
- Precision: 0.9316
- Recall: 0.9497
- F1: 0.9406
- Accuracy: 0.9862
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0885 | 1.0 | 1756 | 0.0692 | 0.9162 | 0.9312 | 0.9236 | 0.9813 |
| 0.0364 | 2.0 | 3512 | 0.0652 | 0.9233 | 0.9455 | 0.9342 | 0.9854 |
| 0.018 | 3.0 | 5268 | 0.0630 | 0.9316 | 0.9497 | 0.9406 | 0.9862 |
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
|