File size: 1,018 Bytes
ea338bf
fe74bfa
451b1d6
44c2bb9
451b1d6
 
 
44c2bb9
 
 
451b1d6
ea338bf
 
 
451b1d6
ea338bf
451b1d6
ea338bf
451b1d6
 
 
 
ea338bf
 
451b1d6
ea338bf
 
 
 
451b1d6
ea338bf
451b1d6
ea338bf
451b1d6
ea338bf
 
451b1d6
ea338bf
44c2bb9
451b1d6
 
ea338bf
44c2bb9
 
ea338bf
451b1d6
ea338bf
451b1d6
 
ea338bf
44c2bb9
ea338bf
44c2bb9
ea338bf
451b1d6
ea338bf
44c2bb9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
library_name: transformers
license: mit
language:
- tr
metrics:
- accuracy
- f1
- precision
- recall
pipeline_tag: text-classification
---


# About the Model

This model is a Turkish-based convBERT model created to classify Turkish social media bullying data. Classes included in the model

* Cinsiyetçilik
* Irkçılık
* Kızdırma
* Nötr


The model was trained from a dataset containing 2981 Twitter data.




## Dependency 

pip install transformers

pip install torch


## Example 


```python
from transformers import ConvBertTokenizer, ConvBertForSequenceClassification,TextClassificationPipeline

tokenizer = ConvBertTokenizer.from_pretrained("AIZinu/convBERT-turk-based-cyberbullying")
model = ConvBertForSequenceClassification.from_pretrained("AIZinu/convBERT-turk-based-cyberbullying")

pipe= TextClassificationPipeline(model=model, tokenizer=tokenizer)

print(pipe("Hadi modeli deneyelim"))
```

Result:

[{'label': 'LABEL_3', 'score': 0.9994651675224304}]

## Model Card Authors

* Bilge Nur BEKAR