--- license: mit language: - en - zh --- ```python import torch from transformers.models.bert import BertTokenizer, BertForSequenceClassification from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load model architecture from COLD and load fine-tuned params. model_name = "thu-coai/roberta-base-cold" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) model_path = "finetuned_cold_LoL.pth" # Could be downloaded in this repo. model.load_state_dict(torch.load(model_path)) # Demo for toxicity detection texts = ['狠狠地导', '卡了哟', 'gala有卡莎皮肤,你们这些小黑子有吗?', '早改了,改成回血了'] model_input = tokenizer(texts, return_tensors="pt", padding=True) model_output = model(**model_input, return_dict=False) prediction = torch.argmax(model_output[0].cpu(), dim=-1) prediction = [p.item() for p in prediction] # prediction = [1, 0, 1, 0] # 1 for toxic, 0 for non-toxic ```