File size: 7,826 Bytes
320e69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import numpy as np
import os
import argparse
import re

from fastspeech2 import FastSpeech2
from loss import FastSpeech2Loss

from dataset import Dataset
from text import text_to_sequence, sequence_to_text

import hparams as hp
import utils
import audio as Audio

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def get_FastSpeech2(num):
    checkpoint_path = os.path.join(hp.checkpoint_path, "checkpoint_{}.pth.tar".format(num))
    model = nn.DataParallel(FastSpeech2())
    model.load_state_dict(torch.load(checkpoint_path)['model'])
    model.requires_grad = False
    model.eval()
    return model

def evaluate(model, step, vocoder=None):
    model.eval()
    torch.manual_seed(0)

    mean_mel, std_mel = torch.tensor(np.load(os.path.join(hp.preprocessed_path, "mel_stat.npy")), dtype=torch.float).to(device)
    mean_f0, std_f0 = torch.tensor(np.load(os.path.join(hp.preprocessed_path, "f0_stat.npy")), dtype=torch.float).to(device)
    mean_energy, std_energy = torch.tensor(np.load(os.path.join(hp.preprocessed_path, "energy_stat.npy")), dtype=torch.float).to(device)

    eval_path = hp.eval_path
    if not os.path.exists(eval_path):
        os.makedirs(eval_path)

    # Get dataset
    dataset = Dataset("val.txt", sort=False)
    loader = DataLoader(dataset, batch_size=hp.batch_size**2, shuffle=False, collate_fn=dataset.collate_fn, drop_last=False, num_workers=0, )
    
    # Get loss function
    Loss = FastSpeech2Loss().to(device)

    # Evaluation
    d_l = []
    f_l = []
    e_l = []
    mel_l = []
    mel_p_l = []
    current_step = 0
    idx = 0
    for i, batchs in enumerate(loader):
        for j, data_of_batch in enumerate(batchs):
            # Get Data
            id_ = data_of_batch["id"]
            text = torch.from_numpy(data_of_batch["text"]).long().to(device)
            mel_target = torch.from_numpy(data_of_batch["mel_target"]).float().to(device)
            D = torch.from_numpy(data_of_batch["D"]).int().to(device)
            log_D = torch.from_numpy(data_of_batch["log_D"]).int().to(device)
            f0 = torch.from_numpy(data_of_batch["f0"]).float().to(device)
            energy = torch.from_numpy(data_of_batch["energy"]).float().to(device)
            src_len = torch.from_numpy(data_of_batch["src_len"]).long().to(device)
            mel_len = torch.from_numpy(data_of_batch["mel_len"]).long().to(device)
            max_src_len = np.max(data_of_batch["src_len"]).astype(np.int32)
            max_mel_len = np.max(data_of_batch["mel_len"]).astype(np.int32)
        
            with torch.no_grad():
                # Forward
                mel_output, mel_postnet_output, log_duration_output, f0_output, energy_output, src_mask, mel_mask, out_mel_len = model(
                        text, src_len, mel_len, D, f0, energy, max_src_len, max_mel_len)
                
                # Cal Loss
                mel_loss, mel_postnet_loss, d_loss, f_loss, e_loss = Loss(
                        log_duration_output, log_D, f0_output, f0, energy_output, energy, mel_output, mel_postnet_output, mel_target, ~src_mask, ~mel_mask)
                
                d_l.append(d_loss.item())
                f_l.append(f_loss.item())
                e_l.append(e_loss.item())
                mel_l.append(mel_loss.item())
                mel_p_l.append(mel_postnet_loss.item())

                if idx == 0 and vocoder is not None:
                    # Run vocoding and plotting spectrogram only when the vocoder is defined
                    for k in range(1):
                        basename = id_[k]
                        gt_length = mel_len[k]
                        out_length = out_mel_len[k]
                        
                        mel_target_torch = mel_target[k:k+1, :gt_length]
                        mel_target_ = mel_target[k, :gt_length]
                        mel_postnet_torch = mel_postnet_output[k:k+1, :out_length]
                        mel_postnet = mel_postnet_output[k, :out_length]

                        mel_target_torch = utils.de_norm(mel_target_torch, mean_mel, std_mel).transpose(1, 2).detach()
                        mel_target_ = utils.de_norm(mel_target_, mean_mel, std_mel).cpu().transpose(0, 1).detach()
                        mel_postnet_torch = utils.de_norm(mel_postnet_torch, mean_mel, std_mel).transpose(1, 2).detach()
                        mel_postnet = utils.de_norm(mel_postnet, mean_mel, std_mel).cpu().transpose(0, 1).detach()

                        if hp.vocoder == "vocgan":
                            utils.vocgan_infer(mel_target_torch, vocoder, path=os.path.join(hp.eval_path, 'eval_groundtruth_{}_{}.wav'.format(basename, hp.vocoder)))   
                            utils.vocgan_infer(mel_postnet_torch, vocoder, path=os.path.join(hp.eval_path, 'eval_step_{}_{}_{}.wav'.format(step, basename, hp.vocoder)))  
                        np.save(os.path.join(hp.eval_path, 'eval_step_{}_{}_mel.npy'.format(step, basename)), mel_postnet.numpy())
                        
                        f0_ = f0[k, :gt_length]
                        energy_ = energy[k, :gt_length]
                        f0_output_ = f0_output[k, :out_length]
                        energy_output_ = energy_output[k, :out_length]
                     
                        f0_ = utils.de_norm(f0_, mean_f0, std_f0).detach().cpu().numpy()
                        f0_output_ = utils.de_norm(f0_output, mean_f0, std_f0).detach().cpu().numpy()
                        energy_ = utils.de_norm(energy_, mean_energy, std_energy).detach().cpu().numpy()
                        energy_output_ = utils.de_norm(energy_output_, mean_energy, std_energy).detach().cpu().numpy()
 
                        utils.plot_data([(mel_postnet.numpy(), f0_output_, energy_output_), (mel_target_.numpy(), f0_, energy_)], 
                            ['Synthesized Spectrogram', 'Ground-Truth Spectrogram'], filename=os.path.join(hp.eval_path, 'eval_step_{}_{}.png'.format(step, basename)))
                        idx += 1
                    print("done")
            current_step += 1            

    d_l = sum(d_l) / len(d_l)
    f_l = sum(f_l) / len(f_l)
    e_l = sum(e_l) / len(e_l)
    mel_l = sum(mel_l) / len(mel_l)
    mel_p_l = sum(mel_p_l) / len(mel_p_l) 
                    
    str1 = "FastSpeech2 Step {},".format(step)
    str2 = "Duration Loss: {}".format(d_l)
    str3 = "F0 Loss: {}".format(f_l)
    str4 = "Energy Loss: {}".format(e_l)
    str5 = "Mel Loss: {}".format(mel_l)
    str6 = "Mel Postnet Loss: {}".format(mel_p_l)

    print("\n" + str1)
    print(str2)
    print(str3)
    print(str4)
    print(str5)
    print(str6)

    with open(os.path.join(hp.log_path, "eval.txt"), "a") as f_log:
        f_log.write(str1 + "\n")
        f_log.write(str2 + "\n")
        f_log.write(str3 + "\n")
        f_log.write(str4 + "\n")
        f_log.write(str5 + "\n")
        f_log.write(str6 + "\n")
        f_log.write("\n")
    model.train()

    return d_l, f_l, e_l, mel_l, mel_p_l

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument('--step', type=int, default=30000)
    args = parser.parse_args()
    
    # Get model
    model = get_FastSpeech2(args.step).to(device)
    print("Model Has Been Defined")
    num_param = utils.get_param_num(model)
    print('Number of FastSpeech2 Parameters:', num_param)
    
    # Load vocoder
    if hp.vocoder == 'vocgan':
        vocoder = utils.get_vocgan(ckpt_path=hp.vocoder_pretrained_model_path)
    vocoder.to(device)
        
    # Init directories
    if not os.path.exists(hp.log_path):
        os.makedirs(hp.log_path)
    if not os.path.exists(hp.eval_path):
        os.makedirs(hp.eval_path)
    evaluate(model, args.step, vocoder)