File size: 6,760 Bytes
397655d 31fc237 a498569 31fc237 397655d 6e568fd 397655d 5525f4a 59dbe41 3c4a697 99af8ed d8f63d4 3c4a697 39d57c7 6e568fd 3c4a697 6e568fd 3c4a697 6e568fd 3c4a697 6e568fd ec05cf7 6e568fd 3c4a697 6e568fd 3c4a697 6e568fd e40b21f 6e568fd 99af8ed 6e568fd 99af8ed 6e568fd 99af8ed 01cc525 99af8ed 76f90be 7a8372d ab48977 7a8372d ab48977 7a8372d 3c4a697 7a8372d 3c4a697 7a8372d 3c4a697 7a8372d 3c4a697 e40b21f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
library_name: transformers
tags: []
pipeline_tag: text2text-generation
widget:
- text: Dành cho <extra_id_0> hàng th <extra_id_1>iết khi mua xe tay ga và Super Cub (khách hàng mua xe <extra_id_2>1/2017).</s> 🍓 Mua góp lã <extra_id_3>ất <extra_id_4> dẫn c <extra_id_5> từ <extra_id_6></s> 🍓 Mua góp nhận <extra_id_7> vẹt gốc <extra_id_8></s>
example_title: Example 1
---
# 5CD-AI/visocial-T5-base
## Overview
<!-- Provide a quick summary of what the model is/does. -->
We trimmed vocabulary size to 50,589 and continually pretrained `google/mt5-base`[1] on a merged 20GB dataset, the training dataset includes:
- Crawled data (100M comments and 15M posts on Facebook)
- UIT data[2], which is used to pretrain `uitnlp/visobert`[2]
- MC4 ecommerce
- 10.7M comments on VOZ Forum from `tarudesu/VOZ-HSD`[7]
- 3.6M reviews from Amazon[3] translated into Vietnamese from `5CD-AI/Vietnamese-amazon_polarity-gg-translated`
Here are the results on 3 downstream tasks on Vietnamese social media texts, including Hate Speech Detection(UIT-HSD), Toxic Speech Detection(ViCTSD), Hate Spans Detection(ViHOS):
<table>
<tr align="center">
<td rowspan=2><b>Model</td>
<td rowspan=2><b>Average MF1</td>
<td colspan=3><b>Hate Speech Detection</td>
<td colspan=3><b>Toxic Speech Detection</td>
<td colspan=3><b>Hate Spans Detection</td>
</tr>
<tr align="center">
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
<td><b>Acc</td>
<td><b>WF1</td>
<td><b>MF1</td>
</tr>
<tr align="center">
<td align="left">PhoBERT[4]</td>
<td>69.63</td>
<td>86.75</td>
<td>86.52</td>
<td>64.76</td>
<td>90.78</td>
<td>90.27</td>
<td>71.31</td>
<td>84.65</td>
<td>81.12</td>
<td>72.81</td>
</tr>
<tr align="center">
<td align="left">PhoBERT_v2[4]</td>
<td>70.50</td>
<td>87.42</td>
<td>87.33</td>
<td>66.60</td>
<td>90.23</td>
<td>89.78</td>
<td>71.39</td>
<td>84.92</td>
<td>81.51</td>
<td>73.51</td>
</tr>
<tr align="center">
<td align="left">viBERT[5]</td>
<td>67.80</td>
<td>86.33</td>
<td>85.79</td>
<td>62.85</td>
<td>88.81</td>
<td>88.17</td>
<td>67.65</td>
<td>84.63</td>
<td>81.28</td>
<td>72.91</td>
</tr>
<tr align="center">
<td align="left">ViSoBERT[6]</td>
<td>75.07</td>
<td>88.17</td>
<td>87.86</td>
<td>67.71</td>
<td>90.35</td>
<td>90.16</td>
<td>71.45</td>
<td>90.16</td>
<td>90.07</td>
<td>86.04</td>
</tr>
<tr align="center">
<td align="left">ViHateT5[7]</td>
<td>75.56</td>
<td>88.76</td>
<td>89.14</td>
<td>68.67</td>
<td>90.80</td>
<td>91.78</td>
<td>71.63</td>
<td>91.00</td>
<td>90.20</td>
<td>86.37</td>
</tr>
<tr align="center">
<td align="left"><b>visocial-T5-base(Ours)</b></td>
<td><b>78.01</td>
<td><b>89.51</td>
<td><b>89.78</td>
<td><b>71.19</td>
<td><b>92.2</td>
<td><b>93.47</td>
<td><b>73.81</td>
<td><b>92.57</td>
<td><b>92.20</td>
<td><b>89.04</td>
</tr>
</div>
</table>
Visocial-T5-base versus other T5-based models in terms of Vietnamese HSD-related task performance with Macro F1-score:
<table border="1" cellspacing="0" cellpadding="5">
<tr align="center">
<td rowspan=2><b>Model</b></td>
<td colspan=3><b>MF1</b></td>
</tr>
<tr align="center">
<td><b>Hate Speech Detection</b></td>
<td><b>Toxic Speech Detection</b></td>
<td><b>Hate Spans Detection</b></td>
</tr>
<tr align="center">
<td align="left">mT5[1]</td>
<td>66.76</td>
<td>69.93</td>
<td>86.60</td>
</tr>
<tr align="center">
<td align="left">ViT5[8]</td>
<td>66.95</td>
<td>64.82</td>
<td>86.90</td>
</tr>
<tr align="center">
<td align="left">ViHateT5[7]</td>
<td>68.67</td>
<td>71.63</td>
<td>86.37</td>
</tr>
<tr align="center">
<td align="left"><b>visocial-T5-base(Ours)</td>
<td><b>71.90</td>
<td><b>73.81</td>
<td><b>89.04</td>
</tr>
</table>
<!-- ## Usage (HuggingFace Transformers)
Install `transformers` package:
pip install transformers
Then you can use this model for fill-mask task like this:
```python
from transformers import pipeline
model_path = "5CD-AI/visobert-14gb-corpus"
mask_filler = pipeline("fill-mask", model_path)
mask_filler("shop làm ăn như cái <mask>", top_k=10)
``` -->
## Fine-tune Configuration
We fine-tune `5CD-AI/visocial-T5-base` on 3 downstream tasks with `transformers` library with the following configuration:
- seed: 42
- training_epochs: 4
- train_batch_size: 4
- gradient_accumulation_steps: 8
- learning_rate: 3e-4
- lr_scheduler_type: linear
- model_max_length: 256
- metric_for_best_model: eval_loss
- evaluation_strategy: steps
- eval_steps=0.1
## References
[1] [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934)
[2] [ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing](https://aclanthology.org/2023.emnlp-main.315/)
[3] [The Amazon Polarity dataset](https://paperswithcode.com/dataset/amazon-polarity-1)
[4] [PhoBERT: Pre-trained language models for Vietnamese](https://aclanthology.org/2020.findings-emnlp.92/)
[5] [Improving Sequence Tagging for Vietnamese Text Using Transformer-based Neural Models](https://arxiv.org/abs/2006.15994)
[6] [ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing](https://aclanthology.org/2023.emnlp-main.315/)
[7] [ViHateT5: Enhancing Hate Speech Detection in Vietnamese With A Unified Text-to-Text Transformer Model](https://arxiv.org/abs/2405.14141)
[8] [ViT5: Pretrained Text-to-Text Transformer for Vietnamese Language Generation](https://aclanthology.org/2022.naacl-srw.18/)
|