Upload 9 files
Browse files- README.md +10 -0
- config.json +21 -0
- flax_model.msgpack +3 -0
- log.txt +34 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_args.json +25 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## TextAttack Model Card
|
2 |
+
This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack
|
3 |
+
and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned
|
4 |
+
for 5 epochs with a batch size of 16, a learning
|
5 |
+
rate of 5e-05, and a maximum sequence length of 256.
|
6 |
+
Since this was a classification task, the model was trained with a cross-entropy loss function.
|
7 |
+
The best score the model achieved on this task was 0.9699473684210527, as measured by the
|
8 |
+
eval set accuracy, found after 4 epochs.
|
9 |
+
|
10 |
+
For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
|
config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"finetuning_task": "yelp_polarity",
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"type_vocab_size": 2,
|
20 |
+
"vocab_size": 30522
|
21 |
+
}
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80c93148809240ce872694c420e0b28a6d5048518edd50f91b9ac4f2825be5d5
|
3 |
+
size 437942328
|
log.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Writing logs to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/log.txt.
|
2 |
+
Loading [94mnlp[0m dataset [94myelp_polarity[0m, split [94mtrain[0m.
|
3 |
+
Loading [94mnlp[0m dataset [94myelp_polarity[0m, split [94mtest[0m.
|
4 |
+
Loaded dataset. Found: 2 labels: ([0, 1])
|
5 |
+
Loading transformers AutoModelForSequenceClassification: bert-base-uncased
|
6 |
+
Tokenizing training data. (len: 560000)
|
7 |
+
Tokenizing eval data (len: 38000)
|
8 |
+
Loaded data and tokenized in 720.6436557769775s
|
9 |
+
Using torch.nn.DataParallel.
|
10 |
+
Training model across 4 GPUs
|
11 |
+
Wrote original training args to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/train_args.json.
|
12 |
+
***** Running training *****
|
13 |
+
Num examples = 560000
|
14 |
+
Batch size = 16
|
15 |
+
Max sequence length = 256
|
16 |
+
Num steps = 175000
|
17 |
+
Num epochs = 5
|
18 |
+
Learning rate = 5e-05
|
19 |
+
Eval accuracy: 95.95263157894736%
|
20 |
+
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
21 |
+
Eval accuracy: 96.59473684210526%
|
22 |
+
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
23 |
+
Eval accuracy: 96.69473684210527%
|
24 |
+
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
25 |
+
Eval accuracy: 96.91052631578947%
|
26 |
+
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
27 |
+
Eval accuracy: 96.99473684210527%
|
28 |
+
Best acc found. Saved model to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
29 |
+
Finished training. Re-loading and evaluating model from disk.
|
30 |
+
Loading transformers AutoModelForSequenceClassification: bert-base-uncased
|
31 |
+
Eval of saved model accuracy: 96.99473684210527%
|
32 |
+
Saved tokenizer <textattack.models.tokenizers.auto_tokenizer.AutoTokenizer object at 0x7fcc548eb730> to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/.
|
33 |
+
Wrote README to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/README.md.
|
34 |
+
Wrote final training args to /p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/train_args.json.
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:934989a6c6465c39311acbb466e8e27e4a715539c3baa95c7c66b424a6c27a66
|
3 |
+
size 437985387
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "model_max_length": 512}
|
train_args.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "bert-base-uncased",
|
3 |
+
"dataset": "yelp_polarity",
|
4 |
+
"dataset_train_split": "train",
|
5 |
+
"dataset_dev_split": "test",
|
6 |
+
"tb_writer_step": 1000,
|
7 |
+
"checkpoint_steps": -1,
|
8 |
+
"checkpoint_every_epoch": false,
|
9 |
+
"num_train_epochs": 5,
|
10 |
+
"early_stopping_epochs": -1,
|
11 |
+
"batch_size": 16,
|
12 |
+
"max_length": 256,
|
13 |
+
"learning_rate": 5e-05,
|
14 |
+
"grad_accum_steps": 1,
|
15 |
+
"warmup_proportion": 0.1,
|
16 |
+
"config_name": "config.json",
|
17 |
+
"weights_name": "pytorch_model.bin",
|
18 |
+
"enable_wandb": false,
|
19 |
+
"output_dir": "/p/qdata/jm8wx/research/text_attacks/textattack/outputs/training/bert-base-uncased-yelp_polarity-2020-07-08-10:42/",
|
20 |
+
"num_labels": 2,
|
21 |
+
"do_regression": false,
|
22 |
+
"best_eval_score": 0.9699473684210527,
|
23 |
+
"best_eval_score_epoch": 4,
|
24 |
+
"epochs_since_best_eval_score": 0
|
25 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|