File size: 10,264 Bytes
90f531c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "83d8670f-8576-4813-99cc-63ec28572db6",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import pandas as pd\n",
    "import json\n",
    "import os\n",
    "import matplotlib.pyplot as plt\n",
    "from ipywidgets import interact\n",
    "from skimage.transform import resize\n",
    "\n",
    "import sys\n",
    "# import band plotter\n",
    "sys.path.append('..')\n",
    "from src.band_plotters import plot, DATA_DIRECTORY, plot_from_bands_picture"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e7b76ff8-37a0-407b-8a6e-8c3b2462e770",
   "metadata": {},
   "outputs": [],
   "source": [
    "THRESHOLD = 8 # eV\n",
    "MAX_NUMBER_OF_BANDS_WITHIN_THRESHOLD = 189 # for 8eV # set to false to work out again\n",
    "MAX_NUMBER_K_POINTS = 105"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "293b6b2f-61d3-4f97-a8c5-f33b93e909d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_bands_that_come_near_fermi_level(bands, threshold=THRESHOLD):\n",
    "    '''\n",
    "    bands - band energies with efermi subtracted\n",
    "    threshold - distance that bands must approach (at any point!) to be included\n",
    "    '''\n",
    "    distance_from_efermi = np.abs(bands)\n",
    "    mask = (distance_from_efermi < 8).any(axis=1)\n",
    "    return bands[mask]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "447089bb-93ff-462a-ad1a-aa52422b762c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c791e0930b6440708a7cac45be535acc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "interactive(children=(IntSlider(value=258, description='x', max=774, min=-258), Output()), _dom_classes=('widg…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "<function __main__.show(x)>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def show(x):\n",
    "\n",
    "    example = DATA_DIRECTORY/f\"bands/2dm-{x}.json\"\n",
    "    bands_dict=json.load(open(example))\n",
    "    bands_minus_efermi = np.array(bands_dict[\"bands\"][\"1\"]) - bands_dict[\"efermi\"]\n",
    "    plt.imshow(bands_minus_efermi)\n",
    "    plt.show()\n",
    "    bands_minus_efermi_in_threshold = get_bands_that_come_near_fermi_level(bands_minus_efermi)\n",
    "    plt.imshow(bands_minus_efermi_in_threshold)\n",
    "\n",
    "interact(show, x=258)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "51325454-65f0-4236-80b2-884bc6f5b8d2",
   "metadata": {},
   "source": [
    "Find maximum number of bands that satify the criteria of being within 8ev of the fermi energy at any point"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "439412f5-f4a2-4d71-85f7-8ab4844f9084",
   "metadata": {},
   "outputs": [],
   "source": [
    "if not MAX_NUMBER_OF_BANDS_WITHIN_THRESHOLD:\n",
    "    df_template = pd.read_csv(\"../fingerprints/template.csv\", index_col=\"ID\")\n",
    "    max_bands_near_efermi = 0\n",
    "    for material_id in df_template.index:\n",
    "        file_name = DATA_DIRECTORY/f\"bands/{material_id}.json\"\n",
    "        bands_dict=json.load(open(file_name))\n",
    "        bands = np.array(bands_dict[\"bands\"][\"1\"])\n",
    "        distance_from_efermi = np.abs(bands - bands_dict[\"efermi\"])\n",
    "        mask = (distance_from_efermi < THRESHOLD).any(axis=1)\n",
    "    \n",
    "        if max_bands_near_efermi < mask.sum():\n",
    "            max_bands_near_efermi = mask.sum()\n",
    "            print(material_id,\":\",  max_bands_near_efermi)\n",
    "            print(distance_from_efermi.shape[1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "0ae6801c-fc1d-4d1b-a1b7-ec5bc62f2e70",
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'MAX_ENERGY' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[8], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[43mMAX_ENERGY\u001b[49m \u001b[38;5;129;01mand\u001b[39;00m MAX_ENERGY):\n\u001b[1;32m      2\u001b[0m     df_template \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m../fingerprints/template.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m, index_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mID\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m      4\u001b[0m     max_energy \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n",
      "\u001b[0;31mNameError\u001b[0m: name 'MAX_ENERGY' is not defined"
     ]
    }
   ],
   "source": [
    "\n",
    "if not (MIN_ENERGY_MINUS_EFERMI and MIN_ENERGY_MINUS_EFERMI):\n",
    "    df_template = pd.read_csv(\"../fingerprints/template.csv\", index_col=\"ID\")\n",
    "\n",
    "    bands = np.array(bands_dict[\"bands\"][\"1\"])\n",
    "\n",
    "    for material_id in df_template.index:\n",
    "        file_name = DATA_DIRECTORY/f\"bands/{material_id}.json\"\n",
    "        bands_dict=json.load(open(file_name))\n",
    "        bands = np.array(bands_dict[\"bands\"][\"1\"])-"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3461a1a8-5142-41bc-849d-83b2cc0c8125",
   "metadata": {},
   "outputs": [],
   "source": [
    "x = \"2dm-258\"\n",
    "example = DATA_DIRECTORY/f\"bands/{x}.json\"\n",
    "bands_dict=json.load(open(example))\n",
    "bands_minus_efermi = np.array(bands_dict[\"bands\"][\"1\"]) - bands_dict[\"efermi\"]\n",
    "bands_minus_efermi_in_threshold = get_bands_that_come_near_fermi_level(bands_minus_efermi)\n",
    "\n",
    "plot_from_bands_picture(\"2dm-258\", bands_minus_efermi_in_threshold)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f36aaa8b-2c04-4250-86c0-609750e17d11",
   "metadata": {},
   "outputs": [],
   "source": [
    "plot(\"2dm-258\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9fa75018-6259-4fc7-a217-a0faa3e9dcdd",
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_from_bands_picture(\"2dm-258\", bands_minus_efermi_in_threshold[50:51])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8ffd13c1-f2df-4399-9cbc-161e0b9ea6f9",
   "metadata": {},
   "outputs": [],
   "source": [
    "bands_minus_efermi_in_threshold[50:51].shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e95e4ba9-e07f-4eff-8583-b7b76ecf5575",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(bands_minus_efermi_in_threshold)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6293a30a-0224-4485-a5fd-b6d62f0d3129",
   "metadata": {},
   "outputs": [],
   "source": [
    "new =resize(bands_minus_efermi_in_threshold, (500, 105), preserve_range=True, mode=\"edge\", order=0)\n",
    "plt.imshow(new)\n",
    "plt.colorbar()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b3d380e2-6185-4fdc-b0e3-33f408f44cc4",
   "metadata": {},
   "outputs": [],
   "source": [
    "plot_from_bands_picture(\"2dm-258\", new)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bcdc7e3-2414-4add-b48b-5938eefa60cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "from PIL import Image\n",
    "im = Image.fromarray(new)\n",
    "# im = im.convert(\"L\")\n",
    "im.save(\"your_file.tiff\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "88de319a-fbcf-47ad-bb78-bea821aa7e88",
   "metadata": {},
   "outputs": [],
   "source": [
    "im.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "87873ce7-4361-4b7e-8247-d6ddc2ae676e",
   "metadata": {},
   "outputs": [],
   "source": [
    "I = np.asarray(Image.open(\"your_file.tiff\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "906bfc2f-ce14-497b-8d8b-279e9fce5023",
   "metadata": {},
   "outputs": [],
   "source": [
    "I.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "852a0daf-6767-402f-9c76-2df7d4bd91bc",
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.imshow(I)\n",
    "plt.colorbar()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7415a3d9-ae6f-4b25-8809-66d4968386e8",
   "metadata": {},
   "outputs": [],
   "source": [
    "for i, index in enumerate(df_template.index):\n",
    "    example = DATA_DIRECTORY/f\"bands/{index}.json\"\n",
    "    bands_dict=json.load(open(example))\n",
    "    bands_minus_efermi = np.array(bands_dict[\"bands\"][\"1\"]) - bands_dict[\"efermi\"]\n",
    "    bands_minus_efermi_in_threshold = get_bands_that_come_near_fermi_level(bands_minus_efermi)\n",
    "    bands_minus_efermi_in_threshold = get_bands_that_come_near_fermi_level(bands)\n",
    "\n",
    "    resized = resize(bands_minus_efermi_in_threshold, (224, bands_minus_efermi_in_threshold.shape[1]), preserve_range=True, mode=\"edge\", order=0)  \n",
    "    im = Image.fromarray(resized)\n",
    "    im.save(f\"../images/{index}.tiff\")\n",
    "\n",
    "    if i%200 == 0:\n",
    "        print(i, \"/\", len(df_template.index))\n",
    "        break"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}