Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,9 +1,101 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
@@ -15,21 +107,21 @@ tags: []
|
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
- **Funded by [optional]:** [More Information Needed]
|
22 |
- **Shared by [optional]:** [More Information Needed]
|
23 |
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):**
|
25 |
-
- **License:**
|
26 |
-
- **Finetuned from model [optional]:**
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:**
|
33 |
- **Paper [optional]:** [More Information Needed]
|
34 |
- **Demo [optional]:** [More Information Needed]
|
35 |
|
@@ -41,7 +133,44 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
41 |
|
42 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
### Downstream Use [optional]
|
47 |
|
@@ -144,11 +273,11 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region:**
|
151 |
-
- **Carbon Emitted:**
|
152 |
|
153 |
## Technical Specifications [optional]
|
154 |
|
@@ -158,7 +287,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
@@ -166,7 +295,7 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
@@ -192,8 +321,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
192 |
|
193 |
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
+
base_model: google/flan-t5-xl
|
3 |
+
datasets:
|
4 |
+
- 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark
|
5 |
+
language: en
|
6 |
+
license: apache-2.0
|
7 |
+
model_id: flan-t5-xl-job-bias-seq2seq-cls
|
8 |
+
model_description: The model is a multi-label classifier designed to detect various
|
9 |
+
types of bias within job descriptions.
|
10 |
+
developers: Tristan Everitt and Paul Ryan
|
11 |
+
model_card_authors: See developers
|
12 |
+
model_card_contact: See developers
|
13 |
+
repo: https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
|
14 |
+
compute_infrastructure: Linux 6.5.0-35-generic x86_64
|
15 |
+
software: Python 3.10.12
|
16 |
+
hardware_type: x86_64
|
17 |
+
hours_used: N/A
|
18 |
+
cloud_provider: N/A
|
19 |
+
cloud_region: N/A
|
20 |
+
co2_emitted: N/A
|
21 |
+
direct_use: "\n ```python\n from transformers import pipeline\n\n pipe =\
|
22 |
+
\ pipeline(\"text-classification\", model=\"2024-mcm-everitt-ryan/flan-t5-xl-job-bias-seq2seq-cls\"\
|
23 |
+
, return_all_scores=True)\n\n results = pipe(\"Join our dynamic and fast-paced\
|
24 |
+
\ team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual\
|
25 |
+
\ who thrives in a vibrant environment. Ideal candidates are digital natives with\
|
26 |
+
\ a fresh perspective, ready to adapt quickly to new trends. You should have recent\
|
27 |
+
\ experience in social media strategies and a strong understanding of current digital\
|
28 |
+
\ marketing tools. We're looking for someone with a youthful mindset, eager to bring\
|
29 |
+
\ innovative ideas to our young and ambitious team. If you're a recent graduate\
|
30 |
+
\ or early in your career, this opportunity is perfect for you!\")\n print(results)\n\
|
31 |
+
\ ```\n >> [[\n {'label': 'age', 'score': 0.9883460402488708}, \n {'label':\
|
32 |
+
\ 'disability', 'score': 0.00787709467113018}, \n {'label': 'feminine', 'score':\
|
33 |
+
\ 0.007224376779049635}, \n {'label': 'general', 'score': 0.09967829287052155},\
|
34 |
+
\ \n {'label': 'masculine', 'score': 0.0035264550242573023}, \n {'label':\
|
35 |
+
\ 'racial', 'score': 0.014618005603551865}, \n {'label': 'sexuality', 'score':\
|
36 |
+
\ 0.005568435415625572}\n ]]\n\n\n Classification Report:\n \n \
|
37 |
+
\ precision recall f1-score support\n \n age \
|
38 |
+
\ 0.72 0.57 0.63 81\n sexuality 0.84 0.79\
|
39 |
+
\ 0.82 81\n disability 0.70 0.60 0.65 81\n\
|
40 |
+
\ masculine 0.64 0.62 0.63 81\n feminine \
|
41 |
+
\ 0.84 0.89 0.86 81\n general 0.28 0.44 \
|
42 |
+
\ 0.34 82\n racial 0.62 0.86 0.72 78\n\
|
43 |
+
\ \n micro avg 0.63 0.68 0.65 565\n macro avg\
|
44 |
+
\ 0.66 0.68 0.66 565\n weighted avg 0.66 0.68\
|
45 |
+
\ 0.66 565\n samples avg 0.31 0.35 0.32 565\n\
|
46 |
+
\ \n "
|
47 |
+
model-index:
|
48 |
+
- name: flan-t5-xl-job-bias-seq2seq-cls
|
49 |
+
results:
|
50 |
+
- task:
|
51 |
+
type: multi_label_classification
|
52 |
+
dataset:
|
53 |
+
name: 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark
|
54 |
+
type: mix_human-eval_synthetic
|
55 |
+
metrics:
|
56 |
+
- type: loss
|
57 |
+
value: 0.6297690868377686
|
58 |
+
- type: accuracy
|
59 |
+
value: 0.724596391263058
|
60 |
+
- type: f1_micro
|
61 |
+
value: 0.6541737649063032
|
62 |
+
- type: f1_macro
|
63 |
+
value: 0.6649871410336159
|
64 |
+
- type: f1_samples
|
65 |
+
value: 0.7891104779993668
|
66 |
+
- type: f1_weighted
|
67 |
+
value: 0.6641255154887347
|
68 |
+
- type: precision_micro
|
69 |
+
value: 0.6305418719211823
|
70 |
+
- type: precision_macro
|
71 |
+
value: 0.6632750205440888
|
72 |
+
- type: precision_samples
|
73 |
+
value: 0.8839822728711617
|
74 |
+
- type: precision_weighted
|
75 |
+
value: 0.6628306019545424
|
76 |
+
- type: recall_micro
|
77 |
+
value: 0.679646017699115
|
78 |
+
- type: recall_macro
|
79 |
+
value: 0.6810192216696281
|
80 |
+
- type: recall_samples
|
81 |
+
value: 0.8638809749920862
|
82 |
+
- type: recall_weighted
|
83 |
+
value: 0.679646017699115
|
84 |
+
- type: roc_auc_micro
|
85 |
+
value: 0.8232934760843503
|
86 |
+
- type: roc_auc_macro
|
87 |
+
value: 0.8239776029004718
|
88 |
+
- type: runtime
|
89 |
+
value: 228.4627
|
90 |
+
- type: samples_per_second
|
91 |
+
value: 4.609
|
92 |
+
- type: steps_per_second
|
93 |
+
value: 0.578
|
94 |
+
- type: epoch
|
95 |
+
value: 1.0
|
96 |
---
|
97 |
|
98 |
+
# Model Card for flan-t5-xl-job-bias-seq2seq-cls
|
99 |
|
100 |
<!-- Provide a quick summary of what the model is/does. -->
|
101 |
|
|
|
107 |
|
108 |
<!-- Provide a longer summary of what this model is. -->
|
109 |
|
110 |
+
The model is a multi-label classifier designed to detect various types of bias within job descriptions.
|
111 |
|
112 |
+
- **Developed by:** Tristan Everitt and Paul Ryan
|
113 |
- **Funded by [optional]:** [More Information Needed]
|
114 |
- **Shared by [optional]:** [More Information Needed]
|
115 |
- **Model type:** [More Information Needed]
|
116 |
+
- **Language(s) (NLP):** en
|
117 |
+
- **License:** apache-2.0
|
118 |
+
- **Finetuned from model [optional]:** google/flan-t5-xl
|
119 |
|
120 |
### Model Sources [optional]
|
121 |
|
122 |
<!-- Provide the basic links for the model. -->
|
123 |
|
124 |
+
- **Repository:** https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
|
125 |
- **Paper [optional]:** [More Information Needed]
|
126 |
- **Demo [optional]:** [More Information Needed]
|
127 |
|
|
|
133 |
|
134 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
135 |
|
136 |
+
|
137 |
+
```python
|
138 |
+
from transformers import pipeline
|
139 |
+
|
140 |
+
pipe = pipeline("text-classification", model="2024-mcm-everitt-ryan/flan-t5-xl-job-bias-seq2seq-cls", return_all_scores=True)
|
141 |
+
|
142 |
+
results = pipe("Join our dynamic and fast-paced team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual who thrives in a vibrant environment. Ideal candidates are digital natives with a fresh perspective, ready to adapt quickly to new trends. You should have recent experience in social media strategies and a strong understanding of current digital marketing tools. We're looking for someone with a youthful mindset, eager to bring innovative ideas to our young and ambitious team. If you're a recent graduate or early in your career, this opportunity is perfect for you!")
|
143 |
+
print(results)
|
144 |
+
```
|
145 |
+
>> [[
|
146 |
+
{'label': 'age', 'score': 0.9883460402488708},
|
147 |
+
{'label': 'disability', 'score': 0.00787709467113018},
|
148 |
+
{'label': 'feminine', 'score': 0.007224376779049635},
|
149 |
+
{'label': 'general', 'score': 0.09967829287052155},
|
150 |
+
{'label': 'masculine', 'score': 0.0035264550242573023},
|
151 |
+
{'label': 'racial', 'score': 0.014618005603551865},
|
152 |
+
{'label': 'sexuality', 'score': 0.005568435415625572}
|
153 |
+
]]
|
154 |
+
|
155 |
+
|
156 |
+
Classification Report:
|
157 |
+
|
158 |
+
precision recall f1-score support
|
159 |
+
|
160 |
+
age 0.72 0.57 0.63 81
|
161 |
+
sexuality 0.84 0.79 0.82 81
|
162 |
+
disability 0.70 0.60 0.65 81
|
163 |
+
masculine 0.64 0.62 0.63 81
|
164 |
+
feminine 0.84 0.89 0.86 81
|
165 |
+
general 0.28 0.44 0.34 82
|
166 |
+
racial 0.62 0.86 0.72 78
|
167 |
+
|
168 |
+
micro avg 0.63 0.68 0.65 565
|
169 |
+
macro avg 0.66 0.68 0.66 565
|
170 |
+
weighted avg 0.66 0.68 0.66 565
|
171 |
+
samples avg 0.31 0.35 0.32 565
|
172 |
+
|
173 |
+
|
174 |
|
175 |
### Downstream Use [optional]
|
176 |
|
|
|
273 |
|
274 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
275 |
|
276 |
+
- **Hardware Type:** x86_64
|
277 |
+
- **Hours used:** N/A
|
278 |
+
- **Cloud Provider:** N/A
|
279 |
+
- **Compute Region:** N/A
|
280 |
+
- **Carbon Emitted:** N/A
|
281 |
|
282 |
## Technical Specifications [optional]
|
283 |
|
|
|
287 |
|
288 |
### Compute Infrastructure
|
289 |
|
290 |
+
Linux 6.5.0-35-generic x86_64
|
291 |
|
292 |
#### Hardware
|
293 |
|
|
|
295 |
|
296 |
#### Software
|
297 |
|
298 |
+
Python 3.10.12
|
299 |
|
300 |
## Citation [optional]
|
301 |
|
|
|
321 |
|
322 |
## Model Card Authors [optional]
|
323 |
|
324 |
+
See developers
|
325 |
|
326 |
## Model Card Contact
|
327 |
|
328 |
+
See developers
|