File size: 15,289 Bytes
3a61d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
############################################################################################################################################
#|| - - - |8.19.2025| - - - || Evolutionary Turing Machine || - - - | 1990two | - - -||#
############################################################################################################################################
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
@dataclass
class NTMConfig:
input_dim: int
output_dim: int
controller_dim: int = 128
controller_layers: int = 1
memory_slots: int = 128
memory_dim: int = 32
heads_read: int = 1
heads_write: int = 1
init_std: float = 0.1
############################################################################################################################################
#################################################### - - - Neural Turing Machine - - - ###############################################
class NeuralTuringMachine(nn.Module):
def __init__(self, cfg: NTMConfig):
super().__init__()
self.cfg = cfg
R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim
ctrl_in = cfg.input_dim + R * Dm
self.controller = nn.LSTMCell(ctrl_in, cfg.controller_dim)
iface_read = R * (Dm + 1) # key + strength
iface_write = W * (Dm + 1 + Dm + Dm) # key + strength + erase + add
self.interface = nn.Linear(cfg.controller_dim, iface_read + iface_write)
self.output = nn.Linear(cfg.controller_dim + R * Dm, cfg.output_dim)
self.reset_parameters()
def reset_parameters(self):
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
if isinstance(m, nn.LSTMCell):
nn.init.xavier_uniform_(m.weight_ih)
nn.init.orthogonal_(m.weight_hh)
nn.init.zeros_(m.bias_ih)
nn.init.zeros_(m.bias_hh)
hs = m.bias_ih.shape[0] // 4
m.bias_ih.data[hs:2*hs].fill_(1.0) # forget gate
m.bias_hh.data[hs:2*hs].fill_(1.0)
def initial_state(self, batch_size: int, device=None):
cfg = self.cfg
device = device or next(self.parameters()).device
M = torch.zeros(batch_size, cfg.memory_slots, cfg.memory_dim, device=device)
if cfg.init_std > 0:
M.normal_(0.0, cfg.init_std)
w_r = torch.ones(batch_size, cfg.heads_read, cfg.memory_slots, device=device) / cfg.memory_slots
w_w = torch.ones(batch_size, cfg.heads_write, cfg.memory_slots, device=device) / cfg.memory_slots
r = torch.zeros(batch_size, cfg.heads_read, cfg.memory_dim, device=device)
h = torch.zeros(batch_size, cfg.controller_dim, device=device)
c = torch.zeros(batch_size, cfg.controller_dim, device=device)
return {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}
def step(self, x: torch.Tensor, state: Dict[str, torch.Tensor]):
cfg = self.cfg
B = x.shape[0]
ctrl_in = torch.cat([x, state['r'].view(B, -1)], dim=-1)
h, c = self.controller(ctrl_in, (state['h'], state['c']))
iface = self.interface(h)
R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim
offset = 0
k_r = iface[:, offset:offset + R * Dm].view(B, R, Dm)
offset += R * Dm
beta_r = F.softplus(iface[:, offset:offset + R])
offset += R
k_w = iface[:, offset:offset + W * Dm].view(B, W, Dm)
offset += W * Dm
beta_w = F.softplus(iface[:, offset:offset + W])
offset += W
erase = torch.sigmoid(iface[:, offset:offset + W * Dm]).view(B, W, Dm)
offset += W * Dm
add = torch.tanh(iface[:, offset:offset + W * Dm]).view(B, W, Dm)
def address(M, k, beta, prev_weight=None):
M_norm = torch.norm(M, dim=-1, keepdim=True).clamp_min(1e-8)
k_norm = torch.norm(k, dim=-1, keepdim=True).clamp_min(1e-8)
cos_sim = torch.sum(M.unsqueeze(1) * k.unsqueeze(2), dim=-1) / (
M_norm.squeeze(-1).unsqueeze(1) * k_norm.squeeze(-1).unsqueeze(-1)
)
content_logits = beta.unsqueeze(-1) * cos_sim
if prev_weight is not None:
content_logits = content_logits + 0.02 * prev_weight
return F.softmax(content_logits, dim=-1)
w_r = address(state['M'], k_r, beta_r, prev_weight=state.get('w_r'))
w_w = address(state['M'], k_w, beta_w, prev_weight=state.get('w_w'))
r = torch.sum(w_r.unsqueeze(-1) * state['M'].unsqueeze(1), dim=2)
M = state['M']
if W > 0:
erase_term = torch.prod(1 - w_w.unsqueeze(-1) * erase.unsqueeze(2), dim=1)
M = M * erase_term
add_term = torch.sum(w_w.unsqueeze(-1) * add.unsqueeze(2), dim=1)
M = M + add_term
y = self.output(torch.cat([h, r.view(B, -1)], dim=-1))
new_state = {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}
return y, new_state
def forward(self, x: torch.Tensor, state=None):
if x.dim() == 2:
if state is None:
state = self.initial_state(x.shape[0], x.device)
return self.step(x, state)
B, T, _ = x.shape
if state is None:
state = self.initial_state(B, x.device)
outputs = []
for t in range(T):
y, state = self.step(x[:, t], state)
outputs.append(y)
return torch.stack(outputs, dim=1), state
@dataclass
class EvolutionaryTuringConfig:
population_size: int = 100
mutation_rate: float = 0.1
architecture_mutation_rate: float = 0.05
elite_ratio: float = 0.2
max_generations: int = 200
input_dim: int = 8
output_dim: int = 8
device: str = 'cpu'
seed: Optional[int] = None
############################################################################################################################################
################################################# - - - Fitness Evaluation - - - #####################################################
class FitnessEvaluator:
def __init__(self, device: str = 'cpu'):
self.device = device
def copy_task(self, ntm: NeuralTuringMachine, seq_len: int = 8, batch_size: int = 16) -> float:
with torch.no_grad():
x = torch.randint(0, 2, (batch_size, seq_len, ntm.cfg.input_dim),
device=self.device, dtype=torch.float32)
delimiter = torch.zeros(batch_size, 1, ntm.cfg.input_dim, device=self.device)
delimiter[:, :, -1] = 1
input_seq = torch.cat([x, delimiter], dim=1)
try:
output, _ = ntm(input_seq)
T = seq_len
D = ntm.cfg.output_dim
pred = output[:, -T:, :D]
d = min(ntm.cfg.input_dim, D)
loss = F.mse_loss(pred[..., :d], x[..., :d])
accuracy = 1.0 / (1.0 + loss.item())
return accuracy
except:
return 0.0
def associative_recall(self, ntm: NeuralTuringMachine, num_pairs: int = 4) -> float:
with torch.no_grad():
batch_size = 8
dim = ntm.cfg.input_dim
keys = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
values = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
pairs = torch.cat([keys, values], dim=-1)
test_keys = torch.cat([keys, torch.zeros_like(values)], dim=-1)
expected_values = torch.cat([torch.zeros_like(keys), values], dim=-1)
input_seq = torch.cat([pairs, test_keys], dim=1) # (B, 2P, dim)
target_seq = torch.cat([torch.zeros_like(pairs), expected_values], dim=1)
try:
output, _ = ntm(input_seq) # (B, 2P, out_dim)
D = ntm.cfg.output_dim
d = min(dim, D)
loss = F.mse_loss(output[:, num_pairs:, :d], target_seq[:, num_pairs:, :d])
accuracy = 1.0 / (1.0 + loss.item())
return accuracy
except:
return 0.0
def evaluate_fitness(self, ntm: NeuralTuringMachine) -> Dict[str, float]:
copy_score = self.copy_task(ntm)
recall_score = self.associative_recall(ntm)
param_count = sum(p.numel() for p in ntm.parameters())
efficiency = 1.0 / (1.0 + param_count / 100000)
composite_score = 0.5 * copy_score + 0.3 * recall_score + 0.2 * efficiency
return {
'copy': copy_score,
'recall': recall_score,
'efficiency': efficiency,
'composite': composite_score
}
############################################################################################################################################
############################################## - - - Evolutionary Turing Machine - - - ###############################################
class EvolutionaryTuringMachine:
def __init__(self, cfg: EvolutionaryTuringConfig):
self.cfg = cfg
self.evaluator = FitnessEvaluator(cfg.device)
self.generation = 0
self.best_fitness = 0.0
self.population = []
if cfg.seed is not None:
torch.manual_seed(cfg.seed)
def create_random_config(self) -> NTMConfig:
return NTMConfig(
input_dim=self.cfg.input_dim,
output_dim=self.cfg.output_dim,
controller_dim=torch.randint(64, 256, (1,)).item(),
controller_layers=torch.randint(1, 3, (1,)).item(),
memory_slots=torch.randint(32, 256, (1,)).item(),
memory_dim=torch.randint(16, 64, (1,)).item(),
heads_read=torch.randint(1, 4, (1,)).item(),
heads_write=torch.randint(1, 3, (1,)).item(),
init_std=0.1
)
def mutate_architecture(self, cfg: NTMConfig) -> NTMConfig:
new_cfg = deepcopy(cfg)
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.controller_dim = max(32, new_cfg.controller_dim + torch.randint(-32, 33, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.memory_slots = max(16, new_cfg.memory_slots + torch.randint(-16, 17, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.memory_dim = max(8, new_cfg.memory_dim + torch.randint(-8, 9, (1,)).item())
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.heads_read = max(1, min(4, new_cfg.heads_read + torch.randint(-1, 2, (1,)).item()))
if torch.rand(1) < self.cfg.architecture_mutation_rate:
new_cfg.heads_write = max(1, min(3, new_cfg.heads_write + torch.randint(-1, 2, (1,)).item()))
return new_cfg
def mutate_parameters(self, ntm: NeuralTuringMachine) -> NeuralTuringMachine:
new_ntm = NeuralTuringMachine(ntm.cfg).to(self.cfg.device)
new_ntm.load_state_dict(deepcopy(ntm.state_dict()))
with torch.no_grad():
for p in new_ntm.parameters():
mask = (torch.rand_like(p) < self.cfg.mutation_rate)
p.add_(torch.randn_like(p) * 0.01 * mask)
return new_ntm
def crossover(self, parent1: NeuralTuringMachine, parent2: NeuralTuringMachine) -> NeuralTuringMachine:
cfg1, cfg2 = parent1.cfg, parent2.cfg
new_cfg = NTMConfig(
input_dim=self.cfg.input_dim,
output_dim=self.cfg.output_dim,
controller_dim=cfg1.controller_dim if torch.rand(1) < 0.5 else cfg2.controller_dim,
memory_slots=cfg1.memory_slots if torch.rand(1) < 0.5 else cfg2.memory_slots,
memory_dim=cfg1.memory_dim if torch.rand(1) < 0.5 else cfg2.memory_dim,
heads_read=cfg1.heads_read if torch.rand(1) < 0.5 else cfg2.heads_read,
heads_write=cfg1.heads_write if torch.rand(1) < 0.5 else cfg2.heads_write,
init_std=0.1
)
child = NeuralTuringMachine(new_cfg).to(self.cfg.device)
return child
def initialize_population(self):
self.population = []
for _ in range(self.cfg.population_size):
cfg = self.create_random_config()
ntm = NeuralTuringMachine(cfg).to(self.cfg.device)
self.population.append(ntm)
def evolve_generation(self) -> Dict[str, float]:
fitness_scores = []
for ntm in self.population:
fitness = self.evaluator.evaluate_fitness(ntm)
fitness_scores.append(fitness['composite'])
sorted_indices = sorted(range(len(fitness_scores)), key=lambda i: fitness_scores[i], reverse=True)
elite_count = int(self.cfg.elite_ratio * self.cfg.population_size)
elites = [self.population[i] for i in sorted_indices[:elite_count]]
new_population = elites.copy()
while len(new_population) < self.cfg.population_size:
if torch.rand(1) < 0.3 and len(elites) >= 2:
parent1, parent2 = torch.randperm(len(elites))[:2]
child = self.crossover(elites[parent1], elites[parent2])
else:
parent_idx = torch.randint(0, elite_count, (1,)).item()
parent = elites[parent_idx]
if torch.rand(1) < 0.5:
child = self.mutate_parameters(parent)
else:
new_cfg = self.mutate_architecture(parent.cfg)
child = NeuralTuringMachine(new_cfg).to(self.cfg.device)
new_population.append(child)
self.population = new_population[:self.cfg.population_size]
self.generation += 1
best_fitness = max(fitness_scores)
avg_fitness = sum(fitness_scores) / len(fitness_scores)
self.best_fitness = max(self.best_fitness, best_fitness)
return {
'generation': self.generation,
'best_fitness': best_fitness,
'avg_fitness': avg_fitness,
'best_ever': self.best_fitness
}
def run_evolution(self) -> List[Dict[str, float]]:
self.initialize_population()
history = []
for gen in range(self.cfg.max_generations):
stats = self.evolve_generation()
history.append(stats)
if gen % 10 == 0:
print(f"Gen {gen}: Best={stats['best_fitness']:.4f}, Avg={stats['avg_fitness']:.4f}")
return history
def get_best_model(self) -> NeuralTuringMachine:
fitness_scores = []
for ntm in self.population:
fitness = self.evaluator.evaluate_fitness(ntm)
fitness_scores.append(fitness['composite'])
best_idx = max(range(len(fitness_scores)), key=lambda i: fitness_scores[i])
return self.population[best_idx]
|