File size: 15,289 Bytes
3a61d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
############################################################################################################################################
#|| - - - |8.19.2025| - - -                         ||   Evolutionary Turing Machine   ||                         - - - | 1990two | - - -||#
############################################################################################################################################

from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy


@dataclass
class NTMConfig:
    input_dim: int
    output_dim: int
    controller_dim: int = 128
    controller_layers: int = 1
    memory_slots: int = 128
    memory_dim: int = 32
    heads_read: int = 1
    heads_write: int = 1
    init_std: float = 0.1

############################################################################################################################################
####################################################    - - - Neural Turing Machine - - -    ###############################################

class NeuralTuringMachine(nn.Module):
    def __init__(self, cfg: NTMConfig):
        super().__init__()
        self.cfg = cfg
        R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim

        ctrl_in = cfg.input_dim + R * Dm
        self.controller = nn.LSTMCell(ctrl_in, cfg.controller_dim)

        iface_read = R * (Dm + 1)  # key + strength
        iface_write = W * (Dm + 1 + Dm + Dm)  # key + strength + erase + add
        self.interface = nn.Linear(cfg.controller_dim, iface_read + iface_write)
        self.output = nn.Linear(cfg.controller_dim + R * Dm, cfg.output_dim)

        self.reset_parameters()

    def reset_parameters(self):
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                nn.init.zeros_(m.bias)
            if isinstance(m, nn.LSTMCell):
                nn.init.xavier_uniform_(m.weight_ih)
                nn.init.orthogonal_(m.weight_hh)
                nn.init.zeros_(m.bias_ih)
                nn.init.zeros_(m.bias_hh)
                hs = m.bias_ih.shape[0] // 4
                m.bias_ih.data[hs:2*hs].fill_(1.0)  # forget gate
                m.bias_hh.data[hs:2*hs].fill_(1.0)


    def initial_state(self, batch_size: int, device=None):
        cfg = self.cfg
        device = device or next(self.parameters()).device

        M = torch.zeros(batch_size, cfg.memory_slots, cfg.memory_dim, device=device)
        if cfg.init_std > 0:
            M.normal_(0.0, cfg.init_std)

        w_r = torch.ones(batch_size, cfg.heads_read, cfg.memory_slots, device=device) / cfg.memory_slots
        w_w = torch.ones(batch_size, cfg.heads_write, cfg.memory_slots, device=device) / cfg.memory_slots
        r = torch.zeros(batch_size, cfg.heads_read, cfg.memory_dim, device=device)
        h = torch.zeros(batch_size, cfg.controller_dim, device=device)
        c = torch.zeros(batch_size, cfg.controller_dim, device=device)

        return {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}

    def step(self, x: torch.Tensor, state: Dict[str, torch.Tensor]):
        cfg = self.cfg
        B = x.shape[0]

        ctrl_in = torch.cat([x, state['r'].view(B, -1)], dim=-1)
        h, c = self.controller(ctrl_in, (state['h'], state['c']))
        iface = self.interface(h)
        R, W, Dm = cfg.heads_read, cfg.heads_write, cfg.memory_dim

        offset = 0
        k_r = iface[:, offset:offset + R * Dm].view(B, R, Dm)
        offset += R * Dm
        beta_r = F.softplus(iface[:, offset:offset + R])
        offset += R

        k_w = iface[:, offset:offset + W * Dm].view(B, W, Dm)
        offset += W * Dm
        beta_w = F.softplus(iface[:, offset:offset + W])
        offset += W
        erase = torch.sigmoid(iface[:, offset:offset + W * Dm]).view(B, W, Dm)
        offset += W * Dm
        add = torch.tanh(iface[:, offset:offset + W * Dm]).view(B, W, Dm)

        def address(M, k, beta, prev_weight=None):
            M_norm = torch.norm(M, dim=-1, keepdim=True).clamp_min(1e-8)
            k_norm = torch.norm(k, dim=-1, keepdim=True).clamp_min(1e-8)
            cos_sim = torch.sum(M.unsqueeze(1) * k.unsqueeze(2), dim=-1) / (
                M_norm.squeeze(-1).unsqueeze(1) * k_norm.squeeze(-1).unsqueeze(-1)
            )
            content_logits = beta.unsqueeze(-1) * cos_sim
            if prev_weight is not None:
                content_logits = content_logits + 0.02 * prev_weight  
            return F.softmax(content_logits, dim=-1)


        w_r = address(state['M'], k_r, beta_r, prev_weight=state.get('w_r'))
        w_w = address(state['M'], k_w, beta_w, prev_weight=state.get('w_w'))
        r = torch.sum(w_r.unsqueeze(-1) * state['M'].unsqueeze(1), dim=2)

        M = state['M']
        if W > 0:
            erase_term = torch.prod(1 - w_w.unsqueeze(-1) * erase.unsqueeze(2), dim=1)
            M = M * erase_term
            add_term = torch.sum(w_w.unsqueeze(-1) * add.unsqueeze(2), dim=1)
            M = M + add_term

        y = self.output(torch.cat([h, r.view(B, -1)], dim=-1))

        new_state = {'M': M, 'w_r': w_r, 'w_w': w_w, 'r': r, 'h': h, 'c': c}
        return y, new_state

    def forward(self, x: torch.Tensor, state=None):
        if x.dim() == 2:  
            if state is None:
                state = self.initial_state(x.shape[0], x.device)
            return self.step(x, state)

        B, T, _ = x.shape
        if state is None:
            state = self.initial_state(B, x.device)

        outputs = []
        for t in range(T):
            y, state = self.step(x[:, t], state)
            outputs.append(y)

        return torch.stack(outputs, dim=1), state

@dataclass
class EvolutionaryTuringConfig:
    population_size: int = 100
    mutation_rate: float = 0.1
    architecture_mutation_rate: float = 0.05
    elite_ratio: float = 0.2
    max_generations: int = 200
    input_dim: int = 8
    output_dim: int = 8
    device: str = 'cpu'
    seed: Optional[int] = None

############################################################################################################################################
#################################################    - - - Fitness Evaluation - - -    #####################################################

class FitnessEvaluator:
    def __init__(self, device: str = 'cpu'):
        self.device = device

    def copy_task(self, ntm: NeuralTuringMachine, seq_len: int = 8, batch_size: int = 16) -> float:
        with torch.no_grad():
            x = torch.randint(0, 2, (batch_size, seq_len, ntm.cfg.input_dim),
                              device=self.device, dtype=torch.float32)

            delimiter = torch.zeros(batch_size, 1, ntm.cfg.input_dim, device=self.device)
            delimiter[:, :, -1] = 1  

            input_seq = torch.cat([x, delimiter], dim=1)          
            try:
                output, _ = ntm(input_seq)                         
                T = seq_len
                D = ntm.cfg.output_dim
                pred = output[:, -T:, :D]
                d = min(ntm.cfg.input_dim, D)
                loss = F.mse_loss(pred[..., :d], x[..., :d])
                accuracy = 1.0 / (1.0 + loss.item())
                return accuracy
            except:
                return 0.0


    def associative_recall(self, ntm: NeuralTuringMachine, num_pairs: int = 4) -> float:
        with torch.no_grad():
            batch_size = 8
            dim = ntm.cfg.input_dim
            keys = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
            values = torch.randn(batch_size, num_pairs, dim // 2, device=self.device)
            pairs = torch.cat([keys, values], dim=-1)

            test_keys = torch.cat([keys, torch.zeros_like(values)], dim=-1)
            expected_values = torch.cat([torch.zeros_like(keys), values], dim=-1)

            input_seq  = torch.cat([pairs, test_keys], dim=1)           # (B, 2P, dim)
            target_seq = torch.cat([torch.zeros_like(pairs), expected_values], dim=1)

            try:
                output, _ = ntm(input_seq)                               # (B, 2P, out_dim)
                D = ntm.cfg.output_dim
                d = min(dim, D)
                loss = F.mse_loss(output[:, num_pairs:, :d], target_seq[:, num_pairs:, :d])
                accuracy = 1.0 / (1.0 + loss.item())
                return accuracy
            except:
                return 0.0


    def evaluate_fitness(self, ntm: NeuralTuringMachine) -> Dict[str, float]:
        copy_score = self.copy_task(ntm)
        recall_score = self.associative_recall(ntm)

        param_count = sum(p.numel() for p in ntm.parameters())
        efficiency = 1.0 / (1.0 + param_count / 100000)  

        composite_score = 0.5 * copy_score + 0.3 * recall_score + 0.2 * efficiency

        return {
            'copy': copy_score,
            'recall': recall_score,
            'efficiency': efficiency,
            'composite': composite_score
        }

############################################################################################################################################
##############################################    - - - Evolutionary Turing Machine - - -    ###############################################

class EvolutionaryTuringMachine:
    def __init__(self, cfg: EvolutionaryTuringConfig):
        self.cfg = cfg
        self.evaluator = FitnessEvaluator(cfg.device)
        self.generation = 0
        self.best_fitness = 0.0
        self.population = []

        if cfg.seed is not None:
            torch.manual_seed(cfg.seed)

    def create_random_config(self) -> NTMConfig:
        return NTMConfig(
            input_dim=self.cfg.input_dim,
            output_dim=self.cfg.output_dim,
            controller_dim=torch.randint(64, 256, (1,)).item(),
            controller_layers=torch.randint(1, 3, (1,)).item(),
            memory_slots=torch.randint(32, 256, (1,)).item(),
            memory_dim=torch.randint(16, 64, (1,)).item(),
            heads_read=torch.randint(1, 4, (1,)).item(),
            heads_write=torch.randint(1, 3, (1,)).item(),
            init_std=0.1
        )

    def mutate_architecture(self, cfg: NTMConfig) -> NTMConfig:
        new_cfg = deepcopy(cfg)

        if torch.rand(1) < self.cfg.architecture_mutation_rate:
            new_cfg.controller_dim = max(32, new_cfg.controller_dim + torch.randint(-32, 33, (1,)).item())

        if torch.rand(1) < self.cfg.architecture_mutation_rate:
            new_cfg.memory_slots = max(16, new_cfg.memory_slots + torch.randint(-16, 17, (1,)).item())

        if torch.rand(1) < self.cfg.architecture_mutation_rate:
            new_cfg.memory_dim = max(8, new_cfg.memory_dim + torch.randint(-8, 9, (1,)).item())

        if torch.rand(1) < self.cfg.architecture_mutation_rate:
            new_cfg.heads_read = max(1, min(4, new_cfg.heads_read + torch.randint(-1, 2, (1,)).item()))

        if torch.rand(1) < self.cfg.architecture_mutation_rate:
            new_cfg.heads_write = max(1, min(3, new_cfg.heads_write + torch.randint(-1, 2, (1,)).item()))

        return new_cfg

    def mutate_parameters(self, ntm: NeuralTuringMachine) -> NeuralTuringMachine:
        new_ntm = NeuralTuringMachine(ntm.cfg).to(self.cfg.device)
        new_ntm.load_state_dict(deepcopy(ntm.state_dict()))
        with torch.no_grad():
            for p in new_ntm.parameters():
                mask = (torch.rand_like(p) < self.cfg.mutation_rate)
                p.add_(torch.randn_like(p) * 0.01 * mask)  
        return new_ntm


    def crossover(self, parent1: NeuralTuringMachine, parent2: NeuralTuringMachine) -> NeuralTuringMachine:
        cfg1, cfg2 = parent1.cfg, parent2.cfg

        new_cfg = NTMConfig(
            input_dim=self.cfg.input_dim,
            output_dim=self.cfg.output_dim,
            controller_dim=cfg1.controller_dim if torch.rand(1) < 0.5 else cfg2.controller_dim,
            memory_slots=cfg1.memory_slots if torch.rand(1) < 0.5 else cfg2.memory_slots,
            memory_dim=cfg1.memory_dim if torch.rand(1) < 0.5 else cfg2.memory_dim,
            heads_read=cfg1.heads_read if torch.rand(1) < 0.5 else cfg2.heads_read,
            heads_write=cfg1.heads_write if torch.rand(1) < 0.5 else cfg2.heads_write,
            init_std=0.1
        )

        child = NeuralTuringMachine(new_cfg).to(self.cfg.device)
        return child

    def initialize_population(self):
        self.population = []
        for _ in range(self.cfg.population_size):
            cfg = self.create_random_config()
            ntm = NeuralTuringMachine(cfg).to(self.cfg.device)
            self.population.append(ntm)

    def evolve_generation(self) -> Dict[str, float]:
        fitness_scores = []
        for ntm in self.population:
            fitness = self.evaluator.evaluate_fitness(ntm)
            fitness_scores.append(fitness['composite'])

        sorted_indices = sorted(range(len(fitness_scores)), key=lambda i: fitness_scores[i], reverse=True)

        elite_count = int(self.cfg.elite_ratio * self.cfg.population_size)
        elites = [self.population[i] for i in sorted_indices[:elite_count]]

        new_population = elites.copy()

        while len(new_population) < self.cfg.population_size:
            if torch.rand(1) < 0.3 and len(elites) >= 2:
                parent1, parent2 = torch.randperm(len(elites))[:2]
                child = self.crossover(elites[parent1], elites[parent2])
            else:
                parent_idx = torch.randint(0, elite_count, (1,)).item()
                parent = elites[parent_idx]

                if torch.rand(1) < 0.5:
                    child = self.mutate_parameters(parent)
                else:
                    new_cfg = self.mutate_architecture(parent.cfg)
                    child = NeuralTuringMachine(new_cfg).to(self.cfg.device)

            new_population.append(child)

        self.population = new_population[:self.cfg.population_size]
        self.generation += 1

        best_fitness = max(fitness_scores)
        avg_fitness = sum(fitness_scores) / len(fitness_scores)
        self.best_fitness = max(self.best_fitness, best_fitness)

        return {
            'generation': self.generation,
            'best_fitness': best_fitness,
            'avg_fitness': avg_fitness,
            'best_ever': self.best_fitness
        }

    def run_evolution(self) -> List[Dict[str, float]]:
        self.initialize_population()

        history = []
        for gen in range(self.cfg.max_generations):
            stats = self.evolve_generation()
            history.append(stats)

            if gen % 10 == 0:
                print(f"Gen {gen}: Best={stats['best_fitness']:.4f}, Avg={stats['avg_fitness']:.4f}")

        return history

    def get_best_model(self) -> NeuralTuringMachine:
        fitness_scores = []
        for ntm in self.population:
            fitness = self.evaluator.evaluate_fitness(ntm)
            fitness_scores.append(fitness['composite'])

        best_idx = max(range(len(fitness_scores)), key=lambda i: fitness_scores[i])
        return self.population[best_idx]