0xnu commited on
Commit
1b7fd57
·
verified ·
1 Parent(s): 0421ce3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -83,7 +83,7 @@ Then you can use the model like this:
83
 
84
  ```python
85
  from sentence_transformers import SentenceTransformer
86
- sentences = ["This is an example sentence", "Each sentence is converted"]
87
 
88
  model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-yoruba')
89
  embeddings = model.encode(sentences)
@@ -105,7 +105,7 @@ def mean_pooling(model_output, attention_mask):
105
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
106
 
107
  # Sentences we want sentence embeddings for
108
- sentences = ['This is an example sentence', 'Each sentence is converted']
109
 
110
  # Load model from HuggingFace Hub
111
  tokenizer = AutoTokenizer.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')
 
83
 
84
  ```python
85
  from sentence_transformers import SentenceTransformer
86
+ sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"]
87
 
88
  model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-yoruba')
89
  embeddings = model.encode(sentences)
 
105
  return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
106
 
107
  # Sentences we want sentence embeddings for
108
+ sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"]
109
 
110
  # Load model from HuggingFace Hub
111
  tokenizer = AutoTokenizer.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')