Upload README.md
Browse files
README.md
CHANGED
@@ -83,7 +83,7 @@ Then you can use the model like this:
|
|
83 |
|
84 |
```python
|
85 |
from sentence_transformers import SentenceTransformer
|
86 |
-
sentences = ["
|
87 |
|
88 |
model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-yoruba')
|
89 |
embeddings = model.encode(sentences)
|
@@ -105,7 +105,7 @@ def mean_pooling(model_output, attention_mask):
|
|
105 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
106 |
|
107 |
# Sentences we want sentence embeddings for
|
108 |
-
sentences = [
|
109 |
|
110 |
# Load model from HuggingFace Hub
|
111 |
tokenizer = AutoTokenizer.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')
|
|
|
83 |
|
84 |
```python
|
85 |
from sentence_transformers import SentenceTransformer
|
86 |
+
sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"]
|
87 |
|
88 |
model = SentenceTransformer('0xnu/pmmlv2-fine-tuned-yoruba')
|
89 |
embeddings = model.encode(sentences)
|
|
|
105 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
106 |
|
107 |
# Sentences we want sentence embeddings for
|
108 |
+
sentences = ["Kini olu ilu England", "Kini eranko ti o gbona julọ ni agbaye?"]
|
109 |
|
110 |
# Load model from HuggingFace Hub
|
111 |
tokenizer = AutoTokenizer.from_pretrained('0xnu/pmmlv2-fine-tuned-yoruba')
|