--- library_name: peft --- ## Model Usage ```python import torch import transformers from finetune_peft import get_peft_config, PEFTArguments from peft import get_peft_model model_path = 'EleutherAI/pythia-6.9b-deduped' # peft_path = 'models/codegen25_7b/checkpoint' peft_path = '0xk1h0/pythia-6.9b-deduped-py150k-r20-LoRA' # peft_path = 'models/alpaca-llama-7b-peft/params.p' torch.set_default_tensor_type(torch.cuda.HalfTensor) model = transformers.AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, cache_dir='models') peft_config = get_peft_config(peft_args=PEFTArguments(peft_mode="lora")) model = get_peft_model(model, peft_config) # model.load_state_dict(torch.load(peft_path), strict=False) torch.set_default_tensor_type(torch.cuda.FloatTensor) tokenizer = transformers.AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) batch = tokenizer(""" ### Generate AES MODE encrypt function. """, return_tensors="pt") with torch.no_grad(): out = model.generate( input_ids=batch["input_ids"], attention_mask=torch.ones_like(batch["input_ids"]), max_length=256, do_sample=True, temperature = 0.4, top_p=0.95 ) print(tokenizer.decode(out[0])) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0