File size: 14,181 Bytes
e085e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import retro
import gym
import math
import random
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
from gym import spaces

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import cv2
import torch
from torch.utils.tensorboard import SummaryWriter


class MaxAndSkipEnv(gym.Wrapper):
    def __init__(self, env, skip=4):
        """Return only every `skip`-th frame"""
        gym.Wrapper.__init__(self, env)
        # most recent raw observations (for max pooling across time steps)
        self._obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
        self._skip       = skip

    def step(self, action):
        """Repeat action, sum reward, and max over last observations."""
        total_reward = 0.0
        done = None
        for i in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            if i == self._skip - 2: self._obs_buffer[0] = obs
            if i == self._skip - 1: self._obs_buffer[1] = obs
            total_reward += reward
            if done:
                break
        # Note that the observation on the done=True frame
        # doesn't matter
        max_frame = self._obs_buffer.max(axis=0)

        return max_frame, total_reward, done, info

    def reset(self, **kwargs):
        return self.env.reset(**kwargs)


class LazyFrames(object):
    def __init__(self, frames):
        """This object ensures that common frames between the observations are only stored once.
        It exists purely to optimize memory usage which can be huge for DQN's 1M frames replay
        buffers.
        This object should only be converted to numpy array before being passed to the model.
        You'd not believe how complex the previous solution was."""
        self._frames = frames
        self._out = None

    def _force(self):
        if self._out is None:
            self._out = np.concatenate(self._frames, axis=2)
            self._frames = None
        return self._out

    def __array__(self, dtype=None):
        out = self._force()
        if dtype is not None:
            out = out.astype(dtype)
        return out

    def __len__(self):
        return len(self._force())

    def __getitem__(self, i):
        return self._force()[i]


class FrameStack(gym.Wrapper):
    def __init__(self, env, k):
        """Stack k last frames.
        Returns lazy array, which is much more memory efficient.
        See Also
        --------
        baselines.common.atari_wrappers.LazyFrames
        """
        gym.Wrapper.__init__(self, env)
        self.k = k
        self.frames = deque([], maxlen=k)
        shp = env.observation_space.shape
        self.observation_space = spaces.Box(low=0, high=255, shape=(shp[0], shp[1], shp[2] * k), dtype=env.observation_space.dtype)

    def reset(self):
        ob = self.env.reset()
        for _ in range(self.k):
            self.frames.append(ob)
        return self._get_ob()

    def step(self, action):
        ob, reward, done, info = self.env.step(action)
        self.frames.append(ob)
        return self._get_ob(), reward, done, info

    def _get_ob(self):
        assert len(self.frames) == self.k
        return LazyFrames(list(self.frames))

class ClipRewardEnv(gym.RewardWrapper):
    def __init__(self, env):
        gym.RewardWrapper.__init__(self, env)

    def reward(self, reward):
        """Bin reward to {+1, 0, -1} by its sign."""
        return np.sign(reward)


class ImageToPyTorch(gym.ObservationWrapper):
    def __init__(self, env):
        super(ImageToPyTorch, self).__init__(env)
        old_shape = self.observation_space.shape
        self.observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(old_shape[-1], old_shape[0], old_shape[1]), dtype=np.float32)

    def observation(self, observation):
        return np.moveaxis(observation, 2, 0)


class WarpFrame(gym.ObservationWrapper):
    def __init__(self, env):
        """Warp frames to 84x84 as done in the Nature paper and later work."""
        gym.ObservationWrapper.__init__(self, env)
        self.width = 84
        self.height = 84
        self.observation_space = spaces.Box(low=0, high=255,
            shape=(self.height, self.width, 1), dtype=np.uint8)

    def observation(self, frame):
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
        frame = cv2.resize(frame, (self.width, self.height), interpolation=cv2.INTER_AREA)
        return frame[:, :, None]

class AirstrikerDiscretizer(gym.ActionWrapper):
    # 初期化
    def __init__(self, env):
        super(AirstrikerDiscretizer, self).__init__(env)
        buttons = ['B', 'A', 'MODE', 'START', 'UP', 'DOWN', 'LEFT', 'RIGHT', 'C', 'Y', 'X', 'Z']
        actions = [['LEFT'], ['RIGHT'], ['B']]
        self._actions = []
        for action in actions:
            arr = np.array([False] * 12)
            for button in action:
                arr[buttons.index(button)] = True
            self._actions.append(arr)
        self.action_space = gym.spaces.Discrete(len(self._actions))

    # 行動の取得
    def action(self, a):
        return self._actions[a].copy()


env = retro.make(game='Airstriker-Genesis')
env = MaxAndSkipEnv(env) ## Return only every `skip`-th frame
env = WarpFrame(env) ## Reshape image
env = ImageToPyTorch(env) ## Invert shape
env = FrameStack(env, 4) ## Stack last 4 frames
# env = ScaledFloatFrame(env) ## Scale frames
env = AirstrikerDiscretizer(env)
env = ClipRewardEnv(env)

# set up matplotlib
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
    from IPython import display

plt.ion()

# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Transition = namedtuple('Transition',
                        ('state', 'action', 'next_state', 'reward'))


class ReplayMemory(object):

    def __init__(self, capacity):
        self.memory = deque([],maxlen=capacity)

    def push(self, *args):
        """Save a transition"""
        self.memory.append(Transition(*args))

    def sample(self, batch_size):
        return random.sample(self.memory, batch_size)

    def __len__(self):
        return len(self.memory)


class DQN(nn.Module):

    def __init__(self, n_observations, n_actions):
        super(DQN, self).__init__()
        # self.layer1 = nn.Linear(n_observations, 128)
        # self.layer2 = nn.Linear(128, 128)
        # self.layer3 = nn.Linear(128, n_actions)

        self.layer1 = nn.Conv2d(in_channels=n_observations, out_channels=32, kernel_size=8, stride=4)
        self.layer2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2)
        self.layer3 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1), nn.ReLU(), nn.Flatten())
        self.layer4 = nn.Linear(17024, 512)
        self.layer5 = nn.Linear(512, n_actions)

    # Called with either one element to determine next action, or a batch
    # during optimization. Returns tensor([[left0exp,right0exp]...]).
    def forward(self, x):
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = F.relu(self.layer3(x))
        x = F.relu(self.layer4(x))
        return self.layer5(x)


# BATCH_SIZE is the number of transitions sampled from the replay buffer
# GAMMA is the discount factor as mentioned in the previous section
# EPS_START is the starting value of epsilon
# EPS_END is the final value of epsilon
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
# TAU is the update rate of the target network
# LR is the learning rate of the AdamW optimizer
BATCH_SIZE = 512
GAMMA = 0.99
EPS_START = 1
EPS_END = 0.01
EPS_DECAY = 10000
TAU = 0.005
# LR = 1e-4
LR = 0.00025

# Get number of actions from gym action space
n_actions = env.action_space.n
state = env.reset()
n_observations = len(state)

policy_net = DQN(n_observations, n_actions).to(device)
target_net = DQN(n_observations, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())

optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
memory = ReplayMemory(10000)


steps_done = 0


def select_action(state):
    global steps_done
    sample = random.random()
    eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * steps_done / EPS_DECAY)
    steps_done += 1
    if sample > eps_threshold:
        with torch.no_grad():
            # t.max(1) will return largest column value of each row.
            # second column on max result is index of where max element was
            # found, so we pick action with the larger expected reward.
            return policy_net(state).max(1)[1].view(1, 1), eps_threshold
    else:
        return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long), eps_threshold


episode_durations = []


def plot_durations(show_result=False):
    plt.figure(1)
    durations_t = torch.tensor(episode_durations, dtype=torch.float)
    if show_result:
        plt.title('Result')
    else:
        plt.clf()
        plt.title('Training...')
    plt.xlabel('Episode')
    plt.ylabel('Duration')
    plt.plot(durations_t.numpy())
    # Take 100 episode averages and plot them too
    if len(durations_t) >= 100:
        means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
        means = torch.cat((torch.zeros(99), means))
        plt.plot(means.numpy())

    plt.pause(0.001)  # pause a bit so that plots are updated
    if is_ipython:
        if not show_result:
            display.display(plt.gcf())
            display.clear_output(wait=True)
        else:
            display.display(plt.gcf())



def optimize_model():
    if len(memory) < BATCH_SIZE:
        return
    transitions = memory.sample(BATCH_SIZE)
    # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
    # detailed explanation). This converts batch-array of Transitions
    # to Transition of batch-arrays.
    batch = Transition(*zip(*transitions))

    # Compute a mask of non-final states and concatenate the batch elements
    # (a final state would've been the one after which simulation ended)
    non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
                                          batch.next_state)), device=device, dtype=torch.bool)
    non_final_next_states = torch.cat([s for s in batch.next_state
                                                if s is not None])
    state_batch = torch.cat(batch.state)
    action_batch = torch.cat(batch.action)
    reward_batch = torch.cat(batch.reward)

    # Compute Q(s_t, a) - the model computes Q(s_t), then we select the
    # columns of actions taken. These are the actions which would've been taken
    # for each batch state according to policy_net
    state_action_values = policy_net(state_batch).gather(1, action_batch)

    # Compute V(s_{t+1}) for all next states.
    # Expected values of actions for non_final_next_states are computed based
    # on the "older" target_net; selecting their best reward with max(1)[0].
    # This is merged based on the mask, such that we'll have either the expected
    # state value or 0 in case the state was final.
    next_state_values = torch.zeros(BATCH_SIZE, device=device)
    with torch.no_grad():
        next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0]
    # Compute the expected Q values
    expected_state_action_values = (next_state_values * GAMMA) + reward_batch

    # Compute Huber loss
    criterion = nn.SmoothL1Loss()
    loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))

    # Optimize the model
    optimizer.zero_grad()
    loss.backward()
    # In-place gradient clipping
    torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
    optimizer.step()


with SummaryWriter() as writer:
    if torch.cuda.is_available():
        num_episodes = 600
    else:
        num_episodes = 50
    epsilon = 1
    episode_rewards = []
    for i_episode in range(num_episodes):

        # Initialize the environment and get it's state
        state = env.reset()
        state = torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
        episode_reward = 0
        for t in count():
            action, epsilon = select_action(state)
            observation, reward,  done, info = env.step(action.item())
            reward = torch.tensor([reward], device=device)
            
            done = done or info["gameover"] == 1
            if done:
                episode_durations.append(t + 1)
                print(f"Episode {i_episode} done")
                # plot_durations()
                break
            # if done:
            #     next_state = None
            # else:
            #     next_state = torch.tensor(observation, dtype=torch.float32, device=device).unsqueeze(0)

            next_state = torch.tensor(observation, dtype=torch.float32, device=device).unsqueeze(0)

            # Store the transition in memory
            memory.push(state, action, next_state, reward)
            episode_reward += reward
            # Move to the next state
            state = next_state

            # Perform one step of the optimization (on the policy network)
            optimize_model()

            # Soft update of the target network's weights
            # θ′ ← τ θ + (1 −τ )θ′
            target_net_state_dict = target_net.state_dict()
            policy_net_state_dict = policy_net.state_dict()
            for key in policy_net_state_dict:
                target_net_state_dict[key] = policy_net_state_dict[key]*TAU + target_net_state_dict[key]*(1-TAU)
            target_net.load_state_dict(target_net_state_dict)
            # if done:
            #     episode_durations.append(t + 1)
            #     # plot_durations()
            #     break
        # episode_rewards.append(episode_reward)
        writer.add_scalar("Rewards/Episode", episode_reward, i_episode)
        writer.add_scalar("Epsilon", epsilon, i_episode)
        writer.flush()
    print('Complete')
    plot_durations(show_result=True)
    plt.ioff()
    plt.show()